Abstract
This article reviews the use of natural resources in analytical chemistry throughout history. Plant extracts were employed as indicators in chemistry for identifying the acidity or alkalinity of liquids as early as the 1650s. Later, as the industrial revolution altered people’s lives, synthetic chemicals were used instead. Modern techniques of analysis have replaced conventional ones as a result of advancements in physics and technology. The industrial revolution was an era of excitement until the toxic pollutants released from industries severely damaged people and the environment. The concepts of green chemistry and green analytical chemistry were proposed as potential solutions to the problems. The use of natural extracts as chemical analysis reagents has been reconsidered recently as a sustainable alternative. While new technologies such as artificial intelligence (AI) will influence future trends in analytical chemistry development, the primary goal is to move toward sustainable analytical chemistry, which includes using natural reagents and reducing the amount of chemicals consumed and waste produced.
Funding source: Centre of Excellence for Innovation in Analytical Science and Technology, Chiang Mai University
Award Identifier / Grant number: RG26/2566
Funding source: Alexander von Humboldt-Stiftung
Acknowledgments
This work is dedicated to the 60th anniversary of Chiang Mai University.
-
Research funding: The authors acknowledge Chiang Mai University through the Research Center for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU) (contract No. RG26/2566). We are also grateful to the Alexander von Humboldt Foundation for the indirect support provided to K. Kiwfo and K. Grudpan.
References
[1] R. Yao, C. He, P. Xiao. Chin. Herb. Med. 15, 6 (2023), https://doi.org/10.1016/j.chmed.2022.12.002.Search in Google Scholar PubMed PubMed Central
[2] S. Khan, T. H. Masoodi, N. A. Pala, M. A. Islam, A. Raja, S. Z. Rizvi. Acta Ecol. Sin. (2023), https://doi.org/10.1016/j.chnaes.2023.07.011, In press.Search in Google Scholar
[3] X. Wu, S. Dong, H. Chen, M. Guo, Z. Sun, H. Luo. Chin. Herb. Med. 15, 369 (2023), https://doi.org/10.1016/j.chmed.2023.03.002.Search in Google Scholar PubMed PubMed Central
[4] H. Hassan. Chimia 69, 622 (2015), https://doi.org/10.2533/chimia.2015.622.Search in Google Scholar PubMed
[5] P. A. O’Hare. Robert boyle: pioneer of experimental chemistry, in Books at Iowa, pp. 6–20, Friends of the University of Iowa Libraries, Iowa (1988).10.17077/0006-7474.1149Search in Google Scholar
[6] A. Albert BakerJr. Chymia 9, 147 (1964), https://doi.org/10.2307/27757238.Search in Google Scholar
[7] F. Szabadavary. J. Chem. Educ. 41, 285 (1964), https://doi.org/10.1021/ed041p285.Search in Google Scholar
[8] D. A. Ahumada Forigua, J. Meija. Anal. Bioanal. Chem. 411, 1 (2019), https://doi.org/10.1007/s00216-018-1430-y.Search in Google Scholar PubMed
[9] C. M. BeckII. Anal. Chem. 63, 993A (1991), https://doi.org/10.1021/ac00020a725.Search in Google Scholar
[10] M. G. Rinsler. J. Clin. Pathol. 34, 287 (1981), https://doi.org/10.1136/jcp.34.3.287.Search in Google Scholar PubMed PubMed Central
[11] D. W. Hutchings. Chapter 6 – Isaac Newton, 1642–1727, in Late Seventeenth Century Scientists, D. Hutchings (Ed.), pp. 158–183, Elsevier, Amsterdam (1969).10.1016/B978-0-08-013359-1.50011-5Search in Google Scholar
[12] L. Rosenfeld. Chapter 9 colorimetry and photometry, in Origins of Clinical Chemistry: The Evolution of Protein Analysis, p. 115, Elsevier Science, Amsterdam (2012).Search in Google Scholar
[13] D. W. Ball. Chapter 5 the shapes of spectral signals, in The Basics of Spectroscopy, pp. 67–69, SPIE-The International Society for Optical Engineering, Washington (2001).Search in Google Scholar
[14] J. H. Yoe. Anal. Chem. 29, 1246 (1957), https://doi.org/10.1021/ac60129a001.Search in Google Scholar
[15] M. G. Mellon. Anal. Chem. 24, 924 (1952), https://doi.org/10.1021/ac60066a002.Search in Google Scholar
[16] S. Kumar, S. Jain. J. Chem. 2013, 1 (2013), https://doi.org/10.1155/2013/957647.Search in Google Scholar
[17] P. P. Groumpos. IFAC-PapersOnLine 54, 464 (2021), https://doi.org/10.1016/j.ifacol.2021.10.492.Search in Google Scholar
[18] F. Chemat, M. Abert-Vian, A. S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, G. Cravotto. TrAC, Trends Anal. Chem. 118, 248 (2019), https://doi.org/10.1016/j.trac.2019.05.037.Search in Google Scholar
[19] P. T. Anastas. Origins and early history of green chemistry, in Series on Chemistry, Energy and the Environment, pp. 1–17, World Scientific, Singapore (2018).10.1142/9789813228115_0001Search in Google Scholar
[20] D. A. Gill, T. L. Mix. Chapter 25 – love canal: a classic case study of a contaminated community, in An Introduction to Interdisciplinary Toxicology, C. N. Pope, J. Liu (Eds.), pp. 341–352, Elsevier, Cambridge (2020).10.1016/B978-0-12-813602-7.00025-9Search in Google Scholar
[21] A. Linthorst. Found. Chem. 12, 55 (2010), https://doi.org/10.1007/s10698-009-9079-4.Search in Google Scholar
[22] B. L. Long. International environmental issues and the OECD 1950–2000 an historical perspective, in An Historical Perspective: An Historical Perspective, Bill L. Long (Ed.), OECD Publishing, Paris (2000).Search in Google Scholar
[23] P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, Oxford University Press, Oxford, England, New York (1998).Search in Google Scholar
[24] I. S. Goldstein. Biomass availability and utility for chemicals, in Organic Chemicals From Biomass, p. 2, CRC Press, Florida (2018).10.1201/9781351075251Search in Google Scholar
[25] S. Armenta, S. Garrigues, M. de la Guardia, F. A. Esteve-Turrillas. Green analytical chemistry. In Encyclopedia of Analytical Science, P. Worsfold, C. Poole, A. Townshend, M. Miró (Eds.), pp. 356–361, Academic Press, Oxford, 3rd ed. (2019).Search in Google Scholar
[26] J. Ṙuz̆ic̆ka, E. H. Hansen. Anal. Chim. Acta 78, 145 (1975), https://doi.org/10.1016/S0003-2670(01)84761-9.Search in Google Scholar
[27] C. Sparr Eskilsson, E. Björklund. J. Chromatogr. A 902, 227 (2000), https://doi.org/10.1016/S0021-9673(00)00921-3.Search in Google Scholar PubMed
[28] J. Ruzicka, G. D. Marshall. Anal. Chim. Acta 237, 329 (1990), https://doi.org/10.1016/S0003-2670(00)83937-9.Search in Google Scholar
[29] J. Ruzicka. Analyst 125, 1053 (2000), https://doi.org/10.1039/B001125H.Search in Google Scholar
[30] J. Jakmunee, L. Patimapornlert, S. Suteerapataranon, N. Lenghor, K. Grudpan. Talanta 65, 789 (2005), https://doi.org/10.1016/j.talanta.2004.08.007.Search in Google Scholar PubMed
[31] S. Armenta, S. Garrigues, M. de la Guardia. TrAC, Trends Anal. Chem. 27, 497 (2008), https://doi.org/10.1016/j.trac.2008.05.003.Search in Google Scholar
[32] A. Gałuszka, Z. Migaszewski, J. Namieśnik. TrAC, Trends Anal. Chem. 50, 78 (2013), https://doi.org/10.1016/j.trac.2013.04.010.Search in Google Scholar
[33] K. Grudpan, S. K. Hartwell, S. Lapanantnoppakhun, I. McKelvie. Anal. Methods 2, 1651 (2010), https://doi.org/10.1039/C0AY00253D.Search in Google Scholar
[34] T. Settheeworrarit, S. K. Hartwell, S. Lapanatnoppakhun, J. Jakmunee, G. D. Christian, K. Grudpan. Talanta 68, 262 (2005), https://doi.org/10.1016/j.talanta.2005.07.039.Search in Google Scholar PubMed
[35] K. Kiwfo, P. M. Woi, C. Saenjum, T. Sukkho, K. Grudpan, J. Malays. Anal. Sci. 26, 399 (2022).Search in Google Scholar
[36] A. B. Monji, E. Zolfonoun, S. J. Ahmadi. Toxicol. Environ. Chem. 91, 1229 (2009), https://doi.org/10.1080/02772240802646962.Search in Google Scholar
[37] P. Pinyou, S. K. Hartwell, J. Jakmunee, S. Lapanantnoppakhun, K. Grudpan. Anal. Sci. 26, 619 (2010), https://doi.org/10.2116/analsci.26.619.Search in Google Scholar PubMed
[38] K. Grudpan, S. Hartwell, W. Wongwilai, S. Grudpan, S. Lapanantnoppakhun. Talanta 84, 1396 (2011), https://doi.org/10.1016/j.talanta.2011.03.090.Search in Google Scholar PubMed
[39] S. Tontrong, S. Khonyoung, J. Jakmunee. Food Chem. 132, 624 (2012), https://doi.org/10.1016/j.foodchem.2011.10.100.Search in Google Scholar PubMed
[40] P. Insain, S. Khonyoung, P. Sooksamiti, S. Lapanantnoppakhun, J. Jakmunee, K. Grudpan, K. Zajicek, S. K. Hartwell. Anal. Sci. 29, 655 (2013), https://doi.org/10.2116/analsci.29.655.Search in Google Scholar PubMed
[41] V. B. V. Maciel, C. M. P. Yoshida, T. T. Franco. Carbohydr. Polym. 132, 537 (2015), https://doi.org/10.1016/j.carbpol.2015.06.047.Search in Google Scholar PubMed
[42] W. Siriangkhawut, Y. Khanhuathon, P. Chantiratikul, K. Ponhong, K. Grudpan. Anal. Sci. 32, 329 (2016), https://doi.org/10.2116/analsci.32.329.Search in Google Scholar PubMed
[43] A. Costa, H. Sulistyarti, S. Sabarudin. ARPN J. Eng. Appl. Sci. 12, 7274 (2017).Search in Google Scholar
[44] S. Supharoek, K. Ponhong, K. Grudpan. Talanta 171, 236 (2017), https://doi.org/10.1016/j.talanta.2017.05.004.Search in Google Scholar PubMed
[45] N. Jaikrajang, S. Kruanetr, D. J. Harding, P. Rattanakit. Spectrochim. Acta, Part A 204, 726 (2018), https://doi.org/10.1016/j.saa.2018.06.109.Search in Google Scholar PubMed
[46] S. Supharoek, K. Ponhong, W. Siriangkhawut, K. Grudpan. J. Food Drug Anal. 26, 583 (2018), https://doi.org/10.1016/j.jfda.2017.06.007.Search in Google Scholar PubMed PubMed Central
[47] K. Kiwfo, W. Wongwilai, P. Paengnakorn, S. Boonmapa, S. Sateanchok, K. Grudpan. Talanta 181, 1 (2018), https://doi.org/10.1016/j.talanta.2017.12.056.Search in Google Scholar PubMed
[48] W. Siriangkhawut, K. Ponhong, K. Grudpan. Malays. J. Anal. Sci. 23, 595 (2019), https://doi.org/10.17576/mjas-2019-2304-05.Search in Google Scholar
[49] K. O. Alessio, M. Voss, E. M. M. Flores, A. B. Costa, F. A. Duarte, J. S. Barin. Talanta 204, 266 (2019), https://doi.org/10.1016/j.talanta.2019.05.091.Search in Google Scholar PubMed
[50] W. Siriangkhawut, P. Didpinrum, Y. Khanhuathon, K. Ponhong, K. Grudpan. Anal. Lett. 53, 887 (2020), https://doi.org/10.1080/00032719.2019.1685530.Search in Google Scholar
[51] P. Jaikang, P. Paengnakorn, K. Grudpan. Microchem. J. 152, 104283 (2020), https://doi.org/10.1016/j.microc.2019.104283.Search in Google Scholar
[52] E. Whitford, W. Nzobigeza, S. K. Hartwell. Anal. Lett. 53, 2465 (2020), https://doi.org/10.1080/00032719.2020.1745224.Search in Google Scholar
[53] S. Rahman, N. Saha, S. Sarwar, A. Shamim, N. Shaheen. J. Water Health 20, 1644 (2022), https://doi.org/10.2166/wh.2022.102.Search in Google Scholar PubMed
[54] K. Kesonkan, C. Yeerum, K. Kiwfo, K. Grudpan, M. Vongboot. Molecules 27, 8622 (2022), https://doi.org/10.3390/molecules27238622.Search in Google Scholar PubMed PubMed Central
[55] K. Kiwfo, C. Saenjum, S. Aphichatpanichakul, K. Grudpan. Talanta Open 7, 100193 (2023), https://doi.org/10.1016/j.talo.2023.100193.Search in Google Scholar
[56] K. Kesonkan, S. Apichai, K. Kiwfo, C. Saenjum, M. Vongboot, K. Grudpan. Sustain. Chem. Pharm. 37, 101411 (2024), https://doi.org/10.1016/j.scp.2023.101411.Search in Google Scholar
[57] C. Turner. Pure Appl. Chem. 85, 2217 (2013), https://doi.org/10.1351/pac-con-13-02-05.Search in Google Scholar
[58] J. Płotka-Wasylka, H. M. Mohamed, A. Kurowska-Susdorf, R. Dewani, M. Y. Fares, V. Andruch, Curr. Opin. Green Sustain. Chem. 31, 100508 (2021), https://doi.org/10.1016/j.cogsc.2021.100508.Search in Google Scholar
[59] K. Kiwfo, C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, S. Suteerapataranon, P. Panitsupakamol, D. Chinwong, P. Paengnakorn, S. Chinwong, N. Kotchabhakdi, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 13, 11147 (2021), https://doi.org/10.3390/su132011147.Search in Google Scholar
[60] K. Kiwfo, S. Suteerapataranon, I. D. McKelvie, P. Meng Woi, S. D. Kolev, C. Saenjum, G. D. Christian, K. Grudpan. Microchem. J. 193, 109026 (2023), https://doi.org/10.1016/j.microc.2023.109026.Search in Google Scholar
[61] S. Lapanantnoppakhun, U. Tengjaroensakul, P. Mungkornasawakul, C. Puangpila, S. Kittiwachana, J. Saengtempiam, S. Hartwell. J. Chem. Educ. 97, 207 (2019), https://doi.org/10.1021/acs.jchemed.9b00530.Search in Google Scholar
[62] P. Rattanakit, R. Maungchang. J. Chem. Educ. 96, 756 (2019), https://doi.org/10.1021/acs.jchemed.8b00817.Search in Google Scholar
[63] M. Kanna, S. Somnam, W. Wongwilai, K. Grudpan. Anal. Sci. 35, 347 (2019), https://doi.org/10.2116/analsci.18N019.Search in Google Scholar PubMed
[64] A. Fatoni, M. D. Anggraeni, L. Z. Zulhidayah. IOP Conf. Ser. Mater. Sci. Eng. 509, 012010 (2019), https://doi.org/10.1088/1757-899X/509/1/012010.Search in Google Scholar
[65] A. Sabarudin, D. Indrayani. IOP Conf. Ser. Mater. Sci. Eng. 546, 032027 (2019), https://doi.org/10.1088/1757-899X/546/3/032027.Search in Google Scholar
[66] N. Kotchabhakdi, C. Seanjum, K. Kiwfo, K. Grudpan. Microchem. J. 162, 105860 (2021), https://doi.org/10.1016/j.microc.2020.105860.Search in Google Scholar
[67] S. Kruanetr, K. Prasertboonyai. Curr. Appl. Sci. Technol. 21, 51 (2021), https://doi.org/10.14456/cast.2021.8.Search in Google Scholar
[68] P. Reanpang, T. Pun-uam, J. Jakmunee, S. Khonyoung. J. Anal. Methods Chem. 1, 1 (2021), https://doi.org/10.1155/2021/6665848.Search in Google Scholar PubMed PubMed Central
[69] N. Youngvises, D. H. Nguyen, T. Charoenrat, S. Kradtap-Hartwell, J. Jakmunee, A. AlSuhaimi. Chiang Mai J. Sci. 48, 221 (2021).Search in Google Scholar
[70] K. Kiwfo, P. M. Woi, C. Seanjum, K. Grudpan. Talanta 236, 122848 (2022), https://doi.org/10.1016/j.talanta.2021.122848.Search in Google Scholar PubMed
[71] B. Weerasuk, S. Supharoek, K. Grudpan, K. Ponhong. J. Iran. Chem. Soc. 19, 741 (2022), https://doi.org/10.1007/s13738-021-02337-2.Search in Google Scholar
[72] C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, K. Kiwfo, S. Suteerapataranon, P. Panitsupakamol, P. Paengnakorn, D. Chinwong, S. Chinwong, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 14, 3314 (2022), https://doi.org/10.3390/su14063314.Search in Google Scholar
[73] P. Sari, A. Daud, H. Sulistyarti, A. Sabarudin, D. Nacapricha. Anal. Sci. 38, 759 (2022), https://doi.org/10.1007/s44211-022-00092-9.Search in Google Scholar PubMed
[74] S. Armenta, F. A. Esteve-Turrillas, S. Garrigues, M. de la Guardia. in Green Approaches for Chemical Analysis, pp. 1–38, Elsevier Science, Amsterdam (2022).10.1016/j.greeac.2022.100007Search in Google Scholar
[75] Z. J. Baum, X. Yu, P. Y. Ayala, Y. Zhao, S. P. Watkins, Q. Zhou. J. Chem. Inf. Model. 61, 3197 (2021), https://doi.org/10.1021/acs.jcim.1c00619.Search in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- Preface for the special issue ‘Activities and Actions Towards a Sustainable Future’ – a joint project by the International Union of Pure and Applied Chemistry (IUPAC) and the International Younger Chemists Network (IYCN)
- Special topic papers
- One story as part of the Global Conversation on Sustainability: dye adsorption studies using a novel bio-derived calcite material
- The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
- Renewable carbon resource from biomass: building molecular architectures from furanic platforms
- Paths and synergies in accelerating the UN 17 SDGs through the lens of green chemistry: contributions from a Brazilian university and its Institute of Chemistry
- Outreach in coordinated individual events: the GCS format of CNR Italy
- Green chemistry for all: three principles of Inclusive Green and Sustainable Chemistry Education
- Molecular approach to semiconductors: a shift towards ecofriendly manufacturing and neuroinspired interfaces
Articles in the same Issue
- Frontmatter
- Editorial
- Preface for the special issue ‘Activities and Actions Towards a Sustainable Future’ – a joint project by the International Union of Pure and Applied Chemistry (IUPAC) and the International Younger Chemists Network (IYCN)
- Special topic papers
- One story as part of the Global Conversation on Sustainability: dye adsorption studies using a novel bio-derived calcite material
- The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
- Renewable carbon resource from biomass: building molecular architectures from furanic platforms
- Paths and synergies in accelerating the UN 17 SDGs through the lens of green chemistry: contributions from a Brazilian university and its Institute of Chemistry
- Outreach in coordinated individual events: the GCS format of CNR Italy
- Green chemistry for all: three principles of Inclusive Green and Sustainable Chemistry Education
- Molecular approach to semiconductors: a shift towards ecofriendly manufacturing and neuroinspired interfaces