Home The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry
Article
Licensed
Unlicensed Requires Authentication

The past is the future: from natural acid-base indicators to natural reagents in sustainable analytical chemistry

  • Siripat Suteerapataranon EMAIL logo , Kanokwan Kiwfo , Pei Meng Woi , Chalermpong Saenjum and Kate Grudpan
Published/Copyright: May 3, 2024

Abstract

This article reviews the use of natural resources in analytical chemistry throughout history. Plant extracts were employed as indicators in chemistry for identifying the acidity or alkalinity of liquids as early as the 1650s. Later, as the industrial revolution altered people’s lives, synthetic chemicals were used instead. Modern techniques of analysis have replaced conventional ones as a result of advancements in physics and technology. The industrial revolution was an era of excitement until the toxic pollutants released from industries severely damaged people and the environment. The concepts of green chemistry and green analytical chemistry were proposed as potential solutions to the problems. The use of natural extracts as chemical analysis reagents has been reconsidered recently as a sustainable alternative. While new technologies such as artificial intelligence (AI) will influence future trends in analytical chemistry development, the primary goal is to move toward sustainable analytical chemistry, which includes using natural reagents and reducing the amount of chemicals consumed and waste produced.


Corresponding author: Siripat Suteerapataranon, Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University, Chiang Mai 50200, Thailand, e-mail:

Article note: A collection of invited papers on the activities and actions towards a sustainable future.


Acknowledgments

This work is dedicated to the 60th anniversary of Chiang Mai University.

  1. Research funding: The authors acknowledge Chiang Mai University through the Research Center for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU) (contract No. RG26/2566). We are also grateful to the Alexander von Humboldt Foundation for the indirect support provided to K. Kiwfo and K. Grudpan.

References

[1] R. Yao, C. He, P. Xiao. Chin. Herb. Med. 15, 6 (2023), https://doi.org/10.1016/j.chmed.2022.12.002.Search in Google Scholar PubMed PubMed Central

[2] S. Khan, T. H. Masoodi, N. A. Pala, M. A. Islam, A. Raja, S. Z. Rizvi. Acta Ecol. Sin. (2023), https://doi.org/10.1016/j.chnaes.2023.07.011, In press.Search in Google Scholar

[3] X. Wu, S. Dong, H. Chen, M. Guo, Z. Sun, H. Luo. Chin. Herb. Med. 15, 369 (2023), https://doi.org/10.1016/j.chmed.2023.03.002.Search in Google Scholar PubMed PubMed Central

[4] H. Hassan. Chimia 69, 622 (2015), https://doi.org/10.2533/chimia.2015.622.Search in Google Scholar PubMed

[5] P. A. O’Hare. Robert boyle: pioneer of experimental chemistry, in Books at Iowa, pp. 6–20, Friends of the University of Iowa Libraries, Iowa (1988).10.17077/0006-7474.1149Search in Google Scholar

[6] A. Albert BakerJr. Chymia 9, 147 (1964), https://doi.org/10.2307/27757238.Search in Google Scholar

[7] F. Szabadavary. J. Chem. Educ. 41, 285 (1964), https://doi.org/10.1021/ed041p285.Search in Google Scholar

[8] D. A. Ahumada Forigua, J. Meija. Anal. Bioanal. Chem. 411, 1 (2019), https://doi.org/10.1007/s00216-018-1430-y.Search in Google Scholar PubMed

[9] C. M. BeckII. Anal. Chem. 63, 993A (1991), https://doi.org/10.1021/ac00020a725.Search in Google Scholar

[10] M. G. Rinsler. J. Clin. Pathol. 34, 287 (1981), https://doi.org/10.1136/jcp.34.3.287.Search in Google Scholar PubMed PubMed Central

[11] D. W. Hutchings. Chapter 6 – Isaac Newton, 1642–1727, in Late Seventeenth Century Scientists, D. Hutchings (Ed.), pp. 158–183, Elsevier, Amsterdam (1969).10.1016/B978-0-08-013359-1.50011-5Search in Google Scholar

[12] L. Rosenfeld. Chapter 9 colorimetry and photometry, in Origins of Clinical Chemistry: The Evolution of Protein Analysis, p. 115, Elsevier Science, Amsterdam (2012).Search in Google Scholar

[13] D. W. Ball. Chapter 5 the shapes of spectral signals, in The Basics of Spectroscopy, pp. 67–69, SPIE-The International Society for Optical Engineering, Washington (2001).Search in Google Scholar

[14] J. H. Yoe. Anal. Chem. 29, 1246 (1957), https://doi.org/10.1021/ac60129a001.Search in Google Scholar

[15] M. G. Mellon. Anal. Chem. 24, 924 (1952), https://doi.org/10.1021/ac60066a002.Search in Google Scholar

[16] S. Kumar, S. Jain. J. Chem. 2013, 1 (2013), https://doi.org/10.1155/2013/957647.Search in Google Scholar

[17] P. P. Groumpos. IFAC-PapersOnLine 54, 464 (2021), https://doi.org/10.1016/j.ifacol.2021.10.492.Search in Google Scholar

[18] F. Chemat, M. Abert-Vian, A. S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, G. Cravotto. TrAC, Trends Anal. Chem. 118, 248 (2019), https://doi.org/10.1016/j.trac.2019.05.037.Search in Google Scholar

[19] P. T. Anastas. Origins and early history of green chemistry, in Series on Chemistry, Energy and the Environment, pp. 1–17, World Scientific, Singapore (2018).10.1142/9789813228115_0001Search in Google Scholar

[20] D. A. Gill, T. L. Mix. Chapter 25 – love canal: a classic case study of a contaminated community, in An Introduction to Interdisciplinary Toxicology, C. N. Pope, J. Liu (Eds.), pp. 341–352, Elsevier, Cambridge (2020).10.1016/B978-0-12-813602-7.00025-9Search in Google Scholar

[21] A. Linthorst. Found. Chem. 12, 55 (2010), https://doi.org/10.1007/s10698-009-9079-4.Search in Google Scholar

[22] B. L. Long. International environmental issues and the OECD 1950–2000 an historical perspective, in An Historical Perspective: An Historical Perspective, Bill L. Long (Ed.), OECD Publishing, Paris (2000).Search in Google Scholar

[23] P. T. Anastas, J. C. Warner. Green Chemistry: Theory and Practice, Oxford University Press, Oxford, England, New York (1998).Search in Google Scholar

[24] I. S. Goldstein. Biomass availability and utility for chemicals, in Organic Chemicals From Biomass, p. 2, CRC Press, Florida (2018).10.1201/9781351075251Search in Google Scholar

[25] S. Armenta, S. Garrigues, M. de la Guardia, F. A. Esteve-Turrillas. Green analytical chemistry. In Encyclopedia of Analytical Science, P. Worsfold, C. Poole, A. Townshend, M. Miró (Eds.), pp. 356–361, Academic Press, Oxford, 3rd ed. (2019).Search in Google Scholar

[26] J. Ṙuz̆ic̆ka, E. H. Hansen. Anal. Chim. Acta 78, 145 (1975), https://doi.org/10.1016/S0003-2670(01)84761-9.Search in Google Scholar

[27] C. Sparr Eskilsson, E. Björklund. J. Chromatogr. A 902, 227 (2000), https://doi.org/10.1016/S0021-9673(00)00921-3.Search in Google Scholar PubMed

[28] J. Ruzicka, G. D. Marshall. Anal. Chim. Acta 237, 329 (1990), https://doi.org/10.1016/S0003-2670(00)83937-9.Search in Google Scholar

[29] J. Ruzicka. Analyst 125, 1053 (2000), https://doi.org/10.1039/B001125H.Search in Google Scholar

[30] J. Jakmunee, L. Patimapornlert, S. Suteerapataranon, N. Lenghor, K. Grudpan. Talanta 65, 789 (2005), https://doi.org/10.1016/j.talanta.2004.08.007.Search in Google Scholar PubMed

[31] S. Armenta, S. Garrigues, M. de la Guardia. TrAC, Trends Anal. Chem. 27, 497 (2008), https://doi.org/10.1016/j.trac.2008.05.003.Search in Google Scholar

[32] A. Gałuszka, Z. Migaszewski, J. Namieśnik. TrAC, Trends Anal. Chem. 50, 78 (2013), https://doi.org/10.1016/j.trac.2013.04.010.Search in Google Scholar

[33] K. Grudpan, S. K. Hartwell, S. Lapanantnoppakhun, I. McKelvie. Anal. Methods 2, 1651 (2010), https://doi.org/10.1039/C0AY00253D.Search in Google Scholar

[34] T. Settheeworrarit, S. K. Hartwell, S. Lapanatnoppakhun, J. Jakmunee, G. D. Christian, K. Grudpan. Talanta 68, 262 (2005), https://doi.org/10.1016/j.talanta.2005.07.039.Search in Google Scholar PubMed

[35] K. Kiwfo, P. M. Woi, C. Saenjum, T. Sukkho, K. Grudpan, J. Malays. Anal. Sci. 26, 399 (2022).Search in Google Scholar

[36] A. B. Monji, E. Zolfonoun, S. J. Ahmadi. Toxicol. Environ. Chem. 91, 1229 (2009), https://doi.org/10.1080/02772240802646962.Search in Google Scholar

[37] P. Pinyou, S. K. Hartwell, J. Jakmunee, S. Lapanantnoppakhun, K. Grudpan. Anal. Sci. 26, 619 (2010), https://doi.org/10.2116/analsci.26.619.Search in Google Scholar PubMed

[38] K. Grudpan, S. Hartwell, W. Wongwilai, S. Grudpan, S. Lapanantnoppakhun. Talanta 84, 1396 (2011), https://doi.org/10.1016/j.talanta.2011.03.090.Search in Google Scholar PubMed

[39] S. Tontrong, S. Khonyoung, J. Jakmunee. Food Chem. 132, 624 (2012), https://doi.org/10.1016/j.foodchem.2011.10.100.Search in Google Scholar PubMed

[40] P. Insain, S. Khonyoung, P. Sooksamiti, S. Lapanantnoppakhun, J. Jakmunee, K. Grudpan, K. Zajicek, S. K. Hartwell. Anal. Sci. 29, 655 (2013), https://doi.org/10.2116/analsci.29.655.Search in Google Scholar PubMed

[41] V. B. V. Maciel, C. M. P. Yoshida, T. T. Franco. Carbohydr. Polym. 132, 537 (2015), https://doi.org/10.1016/j.carbpol.2015.06.047.Search in Google Scholar PubMed

[42] W. Siriangkhawut, Y. Khanhuathon, P. Chantiratikul, K. Ponhong, K. Grudpan. Anal. Sci. 32, 329 (2016), https://doi.org/10.2116/analsci.32.329.Search in Google Scholar PubMed

[43] A. Costa, H. Sulistyarti, S. Sabarudin. ARPN J. Eng. Appl. Sci. 12, 7274 (2017).Search in Google Scholar

[44] S. Supharoek, K. Ponhong, K. Grudpan. Talanta 171, 236 (2017), https://doi.org/10.1016/j.talanta.2017.05.004.Search in Google Scholar PubMed

[45] N. Jaikrajang, S. Kruanetr, D. J. Harding, P. Rattanakit. Spectrochim. Acta, Part A 204, 726 (2018), https://doi.org/10.1016/j.saa.2018.06.109.Search in Google Scholar PubMed

[46] S. Supharoek, K. Ponhong, W. Siriangkhawut, K. Grudpan. J. Food Drug Anal. 26, 583 (2018), https://doi.org/10.1016/j.jfda.2017.06.007.Search in Google Scholar PubMed PubMed Central

[47] K. Kiwfo, W. Wongwilai, P. Paengnakorn, S. Boonmapa, S. Sateanchok, K. Grudpan. Talanta 181, 1 (2018), https://doi.org/10.1016/j.talanta.2017.12.056.Search in Google Scholar PubMed

[48] W. Siriangkhawut, K. Ponhong, K. Grudpan. Malays. J. Anal. Sci. 23, 595 (2019), https://doi.org/10.17576/mjas-2019-2304-05.Search in Google Scholar

[49] K. O. Alessio, M. Voss, E. M. M. Flores, A. B. Costa, F. A. Duarte, J. S. Barin. Talanta 204, 266 (2019), https://doi.org/10.1016/j.talanta.2019.05.091.Search in Google Scholar PubMed

[50] W. Siriangkhawut, P. Didpinrum, Y. Khanhuathon, K. Ponhong, K. Grudpan. Anal. Lett. 53, 887 (2020), https://doi.org/10.1080/00032719.2019.1685530.Search in Google Scholar

[51] P. Jaikang, P. Paengnakorn, K. Grudpan. Microchem. J. 152, 104283 (2020), https://doi.org/10.1016/j.microc.2019.104283.Search in Google Scholar

[52] E. Whitford, W. Nzobigeza, S. K. Hartwell. Anal. Lett. 53, 2465 (2020), https://doi.org/10.1080/00032719.2020.1745224.Search in Google Scholar

[53] S. Rahman, N. Saha, S. Sarwar, A. Shamim, N. Shaheen. J. Water Health 20, 1644 (2022), https://doi.org/10.2166/wh.2022.102.Search in Google Scholar PubMed

[54] K. Kesonkan, C. Yeerum, K. Kiwfo, K. Grudpan, M. Vongboot. Molecules 27, 8622 (2022), https://doi.org/10.3390/molecules27238622.Search in Google Scholar PubMed PubMed Central

[55] K. Kiwfo, C. Saenjum, S. Aphichatpanichakul, K. Grudpan. Talanta Open 7, 100193 (2023), https://doi.org/10.1016/j.talo.2023.100193.Search in Google Scholar

[56] K. Kesonkan, S. Apichai, K. Kiwfo, C. Saenjum, M. Vongboot, K. Grudpan. Sustain. Chem. Pharm. 37, 101411 (2024), https://doi.org/10.1016/j.scp.2023.101411.Search in Google Scholar

[57] C. Turner. Pure Appl. Chem. 85, 2217 (2013), https://doi.org/10.1351/pac-con-13-02-05.Search in Google Scholar

[58] J. Płotka-Wasylka, H. M. Mohamed, A. Kurowska-Susdorf, R. Dewani, M. Y. Fares, V. Andruch, Curr. Opin. Green Sustain. Chem. 31, 100508 (2021), https://doi.org/10.1016/j.cogsc.2021.100508.Search in Google Scholar

[59] K. Kiwfo, C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, S. Suteerapataranon, P. Panitsupakamol, D. Chinwong, P. Paengnakorn, S. Chinwong, N. Kotchabhakdi, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 13, 11147 (2021), https://doi.org/10.3390/su132011147.Search in Google Scholar

[60] K. Kiwfo, S. Suteerapataranon, I. D. McKelvie, P. Meng Woi, S. D. Kolev, C. Saenjum, G. D. Christian, K. Grudpan. Microchem. J. 193, 109026 (2023), https://doi.org/10.1016/j.microc.2023.109026.Search in Google Scholar

[61] S. Lapanantnoppakhun, U. Tengjaroensakul, P. Mungkornasawakul, C. Puangpila, S. Kittiwachana, J. Saengtempiam, S. Hartwell. J. Chem. Educ. 97, 207 (2019), https://doi.org/10.1021/acs.jchemed.9b00530.Search in Google Scholar

[62] P. Rattanakit, R. Maungchang. J. Chem. Educ. 96, 756 (2019), https://doi.org/10.1021/acs.jchemed.8b00817.Search in Google Scholar

[63] M. Kanna, S. Somnam, W. Wongwilai, K. Grudpan. Anal. Sci. 35, 347 (2019), https://doi.org/10.2116/analsci.18N019.Search in Google Scholar PubMed

[64] A. Fatoni, M. D. Anggraeni, L. Z. Zulhidayah. IOP Conf. Ser. Mater. Sci. Eng. 509, 012010 (2019), https://doi.org/10.1088/1757-899X/509/1/012010.Search in Google Scholar

[65] A. Sabarudin, D. Indrayani. IOP Conf. Ser. Mater. Sci. Eng. 546, 032027 (2019), https://doi.org/10.1088/1757-899X/546/3/032027.Search in Google Scholar

[66] N. Kotchabhakdi, C. Seanjum, K. Kiwfo, K. Grudpan. Microchem. J. 162, 105860 (2021), https://doi.org/10.1016/j.microc.2020.105860.Search in Google Scholar

[67] S. Kruanetr, K. Prasertboonyai. Curr. Appl. Sci. Technol. 21, 51 (2021), https://doi.org/10.14456/cast.2021.8.Search in Google Scholar

[68] P. Reanpang, T. Pun-uam, J. Jakmunee, S. Khonyoung. J. Anal. Methods Chem. 1, 1 (2021), https://doi.org/10.1155/2021/6665848.Search in Google Scholar PubMed PubMed Central

[69] N. Youngvises, D. H. Nguyen, T. Charoenrat, S. Kradtap-Hartwell, J. Jakmunee, A. AlSuhaimi. Chiang Mai J. Sci. 48, 221 (2021).Search in Google Scholar

[70] K. Kiwfo, P. M. Woi, C. Seanjum, K. Grudpan. Talanta 236, 122848 (2022), https://doi.org/10.1016/j.talanta.2021.122848.Search in Google Scholar PubMed

[71] B. Weerasuk, S. Supharoek, K. Grudpan, K. Ponhong. J. Iran. Chem. Soc. 19, 741 (2022), https://doi.org/10.1007/s13738-021-02337-2.Search in Google Scholar

[72] C. Yeerum, P. Issarangkura Na Ayutthaya, K. Kesonkan, K. Kiwfo, S. Suteerapataranon, P. Panitsupakamol, P. Paengnakorn, D. Chinwong, S. Chinwong, C. Saenjum, M. Vongboot, K. Grudpan. Sustainability 14, 3314 (2022), https://doi.org/10.3390/su14063314.Search in Google Scholar

[73] P. Sari, A. Daud, H. Sulistyarti, A. Sabarudin, D. Nacapricha. Anal. Sci. 38, 759 (2022), https://doi.org/10.1007/s44211-022-00092-9.Search in Google Scholar PubMed

[74] S. Armenta, F. A. Esteve-Turrillas, S. Garrigues, M. de la Guardia. in Green Approaches for Chemical Analysis, pp. 1–38, Elsevier Science, Amsterdam (2022).10.1016/j.greeac.2022.100007Search in Google Scholar

[75] Z. J. Baum, X. Yu, P. Y. Ayala, Y. Zhao, S. P. Watkins, Q. Zhou. J. Chem. Inf. Model. 61, 3197 (2021), https://doi.org/10.1021/acs.jcim.1c00619.Search in Google Scholar PubMed

Published Online: 2024-05-03
Published in Print: 2024-09-25

© 2024 IUPAC & De Gruyter

Downloaded on 24.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2024-0204/pdf
Scroll to top button