Startseite Copper nanoparticle biosynthesis and characterization utilizing a bioflocculant from Kytococcus sedentarius
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Copper nanoparticle biosynthesis and characterization utilizing a bioflocculant from Kytococcus sedentarius

  • Minenhle Peculiar Deo-volente Sibisi , Albertus Kotze Basson , Zuzingcebo Golden Ntombela und Viswanadha Srirama Rajasekhar Pullabhotla ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. April 2024
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

The application of microbial flocculants in nanoparticle synthesis is attracting scientists to utilize them due to their eco-friendliness. This study was mainly focused on biosynthesizing and characterizing copper nanoparticles from a non-pathogenic microorganism Kytococcus sedentarius to produce bioflocculant. The formed copper nanoparticles (CuNPs) were analyzed using UV–vis spectroscope (UV–vis), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffractometer (XRD) and thermo-gravimetric analysis (TGA). After extraction and purification, 2.4 g was produced from bioflocculant in a 1 L culture fermentation mixture. During CuNP biosynthesis, a blue color change was obtained after 24 h of incubation indicating their successful formation. A variety of elements namely, C, O, Cu, P, Ca, Mg and Al were found in the as-synthesized CuNPs with 25.23 % (wt) carbon, 20.13 % (wt) of oxygen and 23.37 % (wt) of Cu element. SEM and TEM images of the product depicted it to be agglomerated with different size and shapes. The TGA showed the CuNPs to be thermal stable as 70 % weight was retained at 900 °C with 30 % weight lost. FT-IR spectrum of the biosynthesized CuNPs contains a variety of functional groups related to sugar and proteins namely, hydroxyl, amine, carboxyl groups and a typical Cu–O bond at 559 cm−1. The crystallite size was estimated to be 28.3 nm, which is in line with JCPDS card no. 89–5899 of copper standard confirming the correct peak orientation. UV–vis analysis revealed the absorption peak to be 275 nm which confirms synthesis of the CuNPs using a bioflocculant.


Corresponding author: Viswanadha Srirama Rajasekhar Pullabhotla, Department of Chemistry, Faculty of Science, Agriculture and Engineering, 61798 University of Zululand , P/Bag X1001, 3886, KwaDlangezwa, South Africa, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).

Award Identifier / Grant number: Development Grant for Rated Researchers (112145)

Award Identifier / Grant number: Incentive Fund Grant (Grant No: 103691)

Acknowledgments

Minenhle Sibisi would like to acknowledge the Council for Scientific and industrial Research (CSIR, South Africa) for the financial assistance in the form of MSc bursary. The authors would like to acknowledge the Electron Microscopy Unit at the University of KwaZulu-Natal, Westville campus, for providing support with the utilization of SEM-EDX for the characterization of the CuNPs.

  1. Research funding: Rajasekhar Pullabhotla wishes to thank the National Research Foundation (NRF, South Africa) for financial assistance in the form of an Incentive Fund Grant (Grant No: 103691) and a Research Development Grant for Rated Researchers (112145).

References

[1] S. Moran. Adv. Chem. Eng. 1(3), 137 (2018).Suche in Google Scholar

[2] A. Campbell. Nephrol. Dial. Transplant. 17(2), 17 (2002), https://doi.org/10.1093/ndt/17.suppl_2.17.Suche in Google Scholar PubMed

[3] J. N. Edokpayi, J. O. Odiyo, O. S. Durowoju. Water Qual. 10, 665 (2017), https://doi.org/10.5772/66561.Suche in Google Scholar

[4] S. Sabir, M. Arshad, S. K. Chaudhari. Sci. World J. 33, 1 (2014), https://doi.org/10.1155/2014/925494.Suche in Google Scholar PubMed PubMed Central

[5] I. Khan, K. Saeed, I. Khan. Arab. J. Chem. 12(7), 908 (2019), https://doi.org/10.1016/j.arabjc.2017.05.011.Suche in Google Scholar

[6] U. Ashik, A. Viswan, S. Kudo, J. Hayashi. Appl. Nanomater. 2: 45 (2018).10.1016/B978-0-08-101971-9.00003-XSuche in Google Scholar

[7] A. Mohajerani, L. Burnett, J. V. Smith, H. Kurmus, J. Milas, H. Arulrajah, S. Horpibulsuk, M. Abdul Kadir. Mater. Sci. 12(19), 3052 (2019), https://doi.org/10.3390/ma12193052.Suche in Google Scholar PubMed PubMed Central

[8] S. H. Lee, B. H. Jun. Int. J. Mol. Sci. 20(4), 865 (2019), https://doi.org/10.3390/ijms20040865.Suche in Google Scholar PubMed PubMed Central

[9] H. Imran, K. Hubeatir, K. A. Aadim, D. S. Abd. New J. Phys. 2, 121 (2021).Suche in Google Scholar

[10] K. N. Thakkar, S. S. Mhatre, R. Y. Parikh. Nanotechnol. Biol. Med. 6(2), 257 (2010), https://doi.org/10.1016/j.nano.2009.07.002.Suche in Google Scholar PubMed

[11] A. Khan, A. Rashid, R. Younas, R. Chong. Arab. J. Chem. 6(1), 21 (2016), https://doi.org/10.1007/s40089-015-0163-6.Suche in Google Scholar

[12] A. L. El-Batal, N. E. Al-Hazmi, F. M. Mosallam, G. S. El-Sayyad. Microb. Pathog. 118, 159 (2018), https://doi.org/10.1016/j.micpath.2018.03.013.Suche in Google Scholar PubMed

[13] S. Shantkriti, P. Rani. Int. J. Curr. Microbiol. Appl. Sci. 3, 374 (2014).Suche in Google Scholar

[14] S. Polaki, G. Mamidi. Microbiol. Appl. Sci. 2, 124 (2018).Suche in Google Scholar

[15] S. Zaki, M. Etarahony, M. Elkady, D. Abd-El-Haleem. Nanometer. J. 7, 51 (2014), https://doi.org/10.1155/2014/431089.Suche in Google Scholar

[16] A. Ruckmani, I. Kaur, P. Schumann, H. P. Klenk, S. Mayilraj. Int. J. Systemat. Evol. Microbiol. 61(10), 2419 (2011), https://doi.org/10.1099/ijs.0.025593-0.Suche in Google Scholar PubMed

[17] D. Sims, T. Brettin, J. C. Detter, C. Han, A. Lapidus, A. Copeland, T. G. Del Rio, M. Nolan, F. Chen, S. Lucas, H. Tice, J. F. Cheng, D. Bruce, L. Goodwin, S. Pitluck, G. Ovchin-nikova, A. Pati, N. Ivanova, K. Mavrommatis, A. Chen, K. Palaniappan, P. D’haeseleer, P. Chain, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholtz, S. Schneider, M. Göker, R. Pukall, N. C. Kyrpides, H. P. Klenk. Stand. Genom. Sci. 1(1), 12 (2009), https://doi.org/10.4056/sigs.761.Suche in Google Scholar PubMed PubMed Central

[18] C. M. Longshaw, J. D. Wright, A. M. Farrell, K. T. Holland. J. Appl. Microbiol. 93(5), 810 (2002), https://doi.org/10.1046/j.1365-2672.2002.01742.x.Suche in Google Scholar PubMed

[19] Doebrich. Copper: a Metal for the Ages, US Department of the Interior, US Geological Survey (2009).10.3133/fs20093031Suche in Google Scholar

[20] A. Musa, M. Ahmad, C. Y. Tian, A. Salisu, M. I. Barde, L. A. Olawale, A. Usman. Chem. J. 10(1), 64 (2019).Suche in Google Scholar

[21] G. N. Dlamini, A. K. Basson, V. S. R. Rajasekhar Pullabhotla. Int. J. Environ. Res. Pub. Health 16(12), 2185 (2019), https://doi.org/10.3390/ijerph16122185.Suche in Google Scholar PubMed PubMed Central

[22] N. Manjula, G. Sarma, B. Shila, K. Suresh Kumar. Phytonanotechnology 1, 255–276, (2022).10.1007/978-981-19-4811-4_12Suche in Google Scholar

[23] Z. Zhang, B. Lin, S. Xia, X. Wang, A. Yang. J. Environ. Sci. 19, 667 (2007), https://doi.org/10.1016/s1001-0742(07)60112-0.Suche in Google Scholar PubMed

[24] N. Ntozonke, K. Okaiyeto, A. S. Okoli, A. O. Olaniran, U. U. Nwodo, A. I. Okoh. Int. J. Environ. Res. Pub. Health 14, 1149 (2017), https://doi.org/10.3390/ijerph14101149.Suche in Google Scholar PubMed PubMed Central

[25] N. G. Dlamini, A. K. Basson, R. V. Pullabhotla. Polymers 12(7), 1618 (2020), https://doi.org/10.3390/polym12071618.Suche in Google Scholar PubMed PubMed Central

[26] T. S. Maliehe, J. Simonis, A. K. Basson, M. Reve, S. Ngema, P. S. Xaba. Afr. J. Biotechnol. 15(41), 2352 (2016).Suche in Google Scholar

[27] C. Liu, D. Sun, J. Liu, J. Zhu, W. Liu. Biochem. Eng. J. 8(1), 1 (2021).10.1186/s40643-021-00381-7Suche in Google Scholar

[28] S. Cosa, L. V. Mabinya, A. O. Olaniran, O. O. Okoh, A. I. Okoh, S. Deyzel, K. Bernard. J. Mol. Struct. 16, 2431 (2011), https://doi.org/10.3390/molecules16032431.Suche in Google Scholar PubMed PubMed Central

[29] N. Ntsangani. Assessment of the Flocculating Efficiency of Bioflocculant Produced by Bacillus sp. Aemreg4 Isolated from Tyhume River, Eastern Cape, University of Fort Hare, South Africa (2016).Suche in Google Scholar

[30] V. Bisht, B. Lal. Front. Microbiol. 19, 1288 (2019), https://doi.org/10.3389/fmicb.2019.01288.Suche in Google Scholar PubMed PubMed Central

[31] D. Mott, J. Galkowski, L. Wang, J. Luo, C. J. Zhong. Langmuir 23(10), 5740 (2007), https://doi.org/10.1021/la0635092.Suche in Google Scholar PubMed

[32] R. Amjad, B. Mubeen, S. S. Ali, S. S. Imam, S. Alshehri, M. M. Ghoneim, S. I. Alzarea, R. Rasool, I. Ullah, M. S. Nadeem, I Kazmi. Polymers 13(24), 4364 (2021), https://doi.org/10.3390/polym13244364.Suche in Google Scholar PubMed PubMed Central

[33] M. T. El-Saadony, M. Abd El-Hack, E. Taha, M. Fouda, N. Ajarem, S. Maodaa, A. Allam, N. Elshaer. J. Nanomater. 10(3), 587 (2021).10.3390/nano10030587Suche in Google Scholar PubMed PubMed Central

[34] W. Liu, Y. Hao, J. Jiang, A. Zhu, J. Zhu, T. Dong. Bioresour. Technol. 218, 318 (2016), https://doi.org/10.1016/j.biortech.2016.06.108.Suche in Google Scholar PubMed

[35] T. Fahmy, T. Sarhan. Adv. Mater. 37, 1 (2022), https://doi.org/10.1080/10667857.2022.2038497.Suche in Google Scholar

[36] J. Jana, M. Ganguly, T. J. Pal. RSC Adv. 6(89), 86174 (2016), https://doi.org/10.1039/c6ra14173k.Suche in Google Scholar

[37] N. G. Dlamini. in Biosynthesis of Copper Nanoparticles Using a Bioflocculant from Alcaligenis faecalis, Characterization and Its Application, University of Zululand, Richards Bay, South Africa (2017).Suche in Google Scholar

[38] S. C. Mali, A. Dhaka, C. K. Githala, R. Trivedi. Biotechnol. Rep. 27, 153 (2020), https://doi.org/10.1016/j.btre.2020.e00518.Suche in Google Scholar PubMed PubMed Central

[39] J. Díaz-Visurraga, C. Daza, C. Pozo, A. Becerra, C. Plessing, A. García. Int. J. Nanomed. 7, 35 (2012).Suche in Google Scholar

[40] Y. Xiong, Y. Wang, Y. Yu, Q. Li, H. Wang, R. Chen, N. He. Appl. Environ. Microbiol. 76(9), 2778 (2010), https://doi.org/10.1128/aem.02558-09.Suche in Google Scholar

[41] Z. M. Abu Tawila, S. Ismail, A. Dadrasnia, M. Usman. J. Mol. Struct. 23(10), 26 (2018), https://doi.org/10.3390/molecules23102689.Suche in Google Scholar PubMed PubMed Central

[42] O. Bodede, S. Shaik, R. Govinden, A. Moodley. J. Nanosci. Nanotechnol. 8(4), 134 (2017).10.1088/2043-6254/aa84edSuche in Google Scholar

[43] Z. G. Ntombela, V. S. R. Pullabhotla, A. K. Basson. BioNanoScience 12, 1–16 (2016).Suche in Google Scholar

[44] Z. N. Kayani, M. Umer, S. Riaz, S. Naseem. J. Electron. Mater. 44(10), 3704 (2015), https://doi.org/10.1007/s11664-015-3867-5.Suche in Google Scholar

[45] M. B. Gawande, A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R. S. Varma. Chem. Rev. 116(6), 3722 (2016), https://doi.org/10.1021/acs.chemrev.5b00482.Suche in Google Scholar PubMed

[46] K. Okaiyeto, U. U. Nwodo, L. V. Mabinya, A. S. Okoli, A. Okoh. Int. J. Mol. Sci . 16(6), 12986 (2015), https://doi.org/10.3390/ijms160612986.Suche in Google Scholar PubMed PubMed Central

[47] L. Wang, F. Ma, Y. Qu, D. Sun, A. Li, J. Guo, M. Yu. World J. Microbiol. Biotechnol. 27(11), 2559–2565 (2011), https://doi.org/10.1007/s11274-011-0726-2.Suche in Google Scholar

[48] N. C. Nkosi, A. K. Basson, Z. G. Ntombela, T. S. Maliehe, R. V. Pullabhotla. Appl. Microbiol. 1(3), 586 (2021), https://doi.org/10.3390/applmicrobiol1030038.Suche in Google Scholar

[49] J. M. Rami, C. D. Patel, C. M. Patel, M. V. Patel. Mater. Today: Proc. 43, 655 (2021), https://doi.org/10.1016/j.matpr.2020.12.554.Suche in Google Scholar

[50] J. Chaudhary, G. Tailor, D. Kumar, A. Joshi. Asian J. 29(7), 1492 (2017), https://doi.org/10.14233/ajchem.2017.20534.Suche in Google Scholar

[51] H. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A. A. Rahuman, T. Santhoshkumar, A. V. Kirthi, C. Jayaseelan, S. Marimuthu. J. Parasitol. 109(5), 1403 (2011), https://doi.org/10.1007/s00436-011-2387-3.Suche in Google Scholar PubMed

[52] J. Madhavi. Appl. Sci. 1(11), 1 (2019), https://doi.org/10.1007/s42452-019-1291-9.Suche in Google Scholar

[53] U. Holzwarth, N. Gibson. Nat. Nanotechnol. 6(9), 534 (2011), https://doi.org/10.1038/nnano.2011.145.Suche in Google Scholar PubMed

[54] R. Betancourt-Galindo, P. Y. Reyes-Rodriguez, B. A. Puente-Urbina, C. A. Avila-Orta, O. S. Rodríguez-Fernández, G. Cadenas-Pliego, R. H. Lira-Saldivar, L. A. García-Cerda. J. Nanomater. 16, 16 (2014), https://doi.org/10.1155/2014/980545.Suche in Google Scholar

[55] W. Zhang. Adv. Exp. Med. Biol. 811, 19–43 (2014).10.1007/978-94-017-8739-0_2Suche in Google Scholar PubMed

[56] B. Wiley, Y. Sun, B. Mayers, Y. Xia. Chem. J. 11(2), 454 (2005), https://doi.org/10.1002/chem.200400927.Suche in Google Scholar PubMed

[57] A. A. Lazarides, G. Schatz. J. Phys. Chem. 104(3), 460 (2000), https://doi.org/10.1021/jp992179+.10.1021/jp992179+Suche in Google Scholar

[58] B. M. Prabhu, S. F. Ali, R. C. Murdock, S. M. Hussain, M. Srivatsan. Nanotoxicology 4(2), 150 (2010), https://doi.org/10.3109/17435390903337693.Suche in Google Scholar PubMed PubMed Central

[59] M. Tiwari, P. Jain, R. Hariharapura, K. Narayanan, U. Bhat, N. Udupa, J. Rao. Materials 51(10), 1348 (2016), https://doi.org/10.1016/j.procbio.2016.08.008.Suche in Google Scholar

Published Online: 2024-04-08

© 2024 IUPAC & De Gruyter

Heruntergeladen am 9.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1021/pdf
Button zum nach oben scrollen