Home Perovskite: a key structure for a sustainable hydrogen economy
Article
Licensed
Unlicensed Requires Authentication

Perovskite: a key structure for a sustainable hydrogen economy

  • Alessandra Sanson EMAIL logo
Published/Copyright: June 27, 2024

Abstract

Perovskites materials, due to their peculiar electronic and ionic properties, play a key role in the development of hydrogen-based technologies. Their flexible structure enables an easy tuning of various physical-chemical characteristics, such as ionic and electronic conductivity and redox active sites concentration, fundamental for these applications. Moreover, the same structure can exhibit different properties that can synergically act to improve the performance of the material for a specific application.


Corresponding author: Alessandra Sanson, Consiglio Nazionale delle Ricerche – Institute of Science, Technology and Sustainability for Ceramics, Via Granarolo 64, Faenza, RA, Italy, e-mail:
Article note: A collection of invited papers based on presentations at the Avogadro Colloquia 2022, 5th edition, that took place on 15–16 December 2022 in Rome, Italy.
  1. Research ethics: Not applicable.

  2. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author states no conflict of interest.

  4. Research funding: The funding under the frame of “Canvas Project” granted by the MASE Ministery of Italy is gratefully acknowledged.

  5. Data availability: Not applicable.

References

[1] M. Zhang. Mater. Today 49, 351 (2021).10.1016/j.mattod.2021.05.004Search in Google Scholar

[2] J. B. Goodenough. Rep. Prog. Phys. 67, 1915 (2004), https://doi.org/10.1088/0034-4885/67/11/r01.Search in Google Scholar

[3] A. Moure. Appl. Sci. 8(1), 62 (2018), https://doi.org/10.3390/app8010062.Search in Google Scholar

[4] H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma. Ceram. Int. 44, 13226 (2018), https://doi.org/10.1016/j.ceramint.2018.04.148.Search in Google Scholar

[5] S. Supriya. Coord. Chem. Rev. 479, 215010 (2023), https://doi.org/10.1016/j.ccr.2022.215010.Search in Google Scholar

[6] X. Liu, L. Xu. Ceram. Int. 43, 12372 (2017).10.1016/j.ceramint.2017.06.103Search in Google Scholar

[7] T. M. Khader. J. Environ. Chem. Eng. 10, 713 (2022).10.1007/s10098-021-02159-zSearch in Google Scholar

[8] Z. Chen. Appl. Catal., B 199, 241 (2016).10.1016/j.apcatb.2016.06.036Search in Google Scholar

[9] G. Naresh, T. K. Mandal. ACS Appl. Mater. Interfaces 6, 21000 (2014), https://doi.org/10.1021/am505767c.Search in Google Scholar PubMed

[10] T. Jardel, A. C. Caballero, M. Villegas. J. Ceram. Soc. Jpn. 116, 511 (2008).10.2109/jcersj2.116.511Search in Google Scholar

[11] S. Das, S. Swain, R. N. P. Choudhary. J. Solid State Chem. 325, 124121 (2023), https://doi.org/10.1016/j.jssc.2023.124121.Search in Google Scholar

[12] S. K. Badge, A. V. Deshpande. Sens. Actuators, A 78(2–3), 88 (1999).10.1016/S0924-4247(99)00223-XSearch in Google Scholar

[13] B. H. Park. Nature 401, 682 (1999).10.1038/44352Search in Google Scholar

[14] E. Mercadelli, N. Sangiorgi, S. Fabbri, A. Sangiorgi, A. Sanson. Sol. Energy Mater. Sol. Cells 267, 112732 (2024), https://doi.org/10.1016/j.solmat.2024.112732.Search in Google Scholar

[15] A. K. Jena, A. Kulkarni, T. Miyasaka. Chem. Rev. 119, 3036 (2019), https://doi.org/10.1021/acs.chemrev.8b00539.Search in Google Scholar PubMed

[16] R. Sharif, A. Khalid, S. W. Ahmad, A. Rehman, H. G. Qutab, H. H. Akhtar. Nanoscale Adv. 5, 3803 (2023), https://doi.org/10.1039/d3na00319a.Search in Google Scholar PubMed PubMed Central

[17] A. Sanson, A. Gondolini. Solid oxide fuel cells. in Materials Science and Materials Engineering, Elsevier (2020).10.1016/B978-0-12-818542-1.00007-2Search in Google Scholar

[18] P. Berg. J. Fuel Cell Sci. Technol. 5(2), 021007 (2008).10.1115/1.2821599Search in Google Scholar

[19] S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad. Renewable Sustainable Energy Rev. 79, 750 (2017), https://doi.org/10.1016/j.rser.2017.05.147.Search in Google Scholar

[20] S. Choi, T. C. Davenport, S. M. Haile. Energy Environ. Sci. 12, 206 (2019), https://doi.org/10.1039/c8ee02865f.Search in Google Scholar

[21] C. Duan. Appl. Phys. Rev. 7, 011314 (2020).Search in Google Scholar

[22] W. Zając. Open Chem. 11, 471 (2013).10.2478/s11532-012-0144-9Search in Google Scholar

[23] M. K. Hossain, M. C. Biswas, R. K. Chanda, M. H. K. Rubel, M. I. Khan, K. Hashizume. Emergent Mater. 4, 999 (2021), https://doi.org/10.1007/s42247-021-00230-5.Search in Google Scholar

[24] A. Gondolini, A. Bartoletti, E. Mercadelli, P. Gramazio, A. Fasolini, F. Basile. J. Membr. Sci. 684, 121865 (2023), https://doi.org/10.1016/j.memsci.2023.121865.Search in Google Scholar

[25] B. Dai, G. M. Biesold, M. Zhang, H. Zou, Y. Ding, Z. L. Wang. Chem. Soc. Rev. 50, 13646 (2021), https://doi.org/10.1039/d1cs00506e.Search in Google Scholar PubMed

[26] Y. Hu, Y. Zhang, Y. Chang, R. L. Snyder, Z. L. Wang. ACS Nano 4, 4220 (2010), https://doi.org/10.1021/nn1010045.Search in Google Scholar PubMed

[27] Z. L. Wang. Adv. Mater. 24, 4632 (2012), https://doi.org/10.1002/adma.201104365.Search in Google Scholar PubMed

Published Online: 2024-06-27
Published in Print: 2024-07-26

© 2024 IUPAC & De Gruyter

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-1016/html?lang=en
Scroll to top button