Abstract
Perovskites materials, due to their peculiar electronic and ionic properties, play a key role in the development of hydrogen-based technologies. Their flexible structure enables an easy tuning of various physical-chemical characteristics, such as ionic and electronic conductivity and redox active sites concentration, fundamental for these applications. Moreover, the same structure can exhibit different properties that can synergically act to improve the performance of the material for a specific application.
-
Research ethics: Not applicable.
-
Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: The funding under the frame of “Canvas Project” granted by the MASE Ministery of Italy is gratefully acknowledged.
-
Data availability: Not applicable.
References
[1] M. Zhang. Mater. Today 49, 351 (2021).10.1016/j.mattod.2021.05.004Search in Google Scholar
[2] J. B. Goodenough. Rep. Prog. Phys. 67, 1915 (2004), https://doi.org/10.1088/0034-4885/67/11/r01.Search in Google Scholar
[3] A. Moure. Appl. Sci. 8(1), 62 (2018), https://doi.org/10.3390/app8010062.Search in Google Scholar
[4] H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma. Ceram. Int. 44, 13226 (2018), https://doi.org/10.1016/j.ceramint.2018.04.148.Search in Google Scholar
[5] S. Supriya. Coord. Chem. Rev. 479, 215010 (2023), https://doi.org/10.1016/j.ccr.2022.215010.Search in Google Scholar
[6] X. Liu, L. Xu. Ceram. Int. 43, 12372 (2017).10.1016/j.ceramint.2017.06.103Search in Google Scholar
[7] T. M. Khader. J. Environ. Chem. Eng. 10, 713 (2022).10.1007/s10098-021-02159-zSearch in Google Scholar
[8] Z. Chen. Appl. Catal., B 199, 241 (2016).10.1016/j.apcatb.2016.06.036Search in Google Scholar
[9] G. Naresh, T. K. Mandal. ACS Appl. Mater. Interfaces 6, 21000 (2014), https://doi.org/10.1021/am505767c.Search in Google Scholar PubMed
[10] T. Jardel, A. C. Caballero, M. Villegas. J. Ceram. Soc. Jpn. 116, 511 (2008).10.2109/jcersj2.116.511Search in Google Scholar
[11] S. Das, S. Swain, R. N. P. Choudhary. J. Solid State Chem. 325, 124121 (2023), https://doi.org/10.1016/j.jssc.2023.124121.Search in Google Scholar
[12] S. K. Badge, A. V. Deshpande. Sens. Actuators, A 78(2–3), 88 (1999).10.1016/S0924-4247(99)00223-XSearch in Google Scholar
[13] B. H. Park. Nature 401, 682 (1999).10.1038/44352Search in Google Scholar
[14] E. Mercadelli, N. Sangiorgi, S. Fabbri, A. Sangiorgi, A. Sanson. Sol. Energy Mater. Sol. Cells 267, 112732 (2024), https://doi.org/10.1016/j.solmat.2024.112732.Search in Google Scholar
[15] A. K. Jena, A. Kulkarni, T. Miyasaka. Chem. Rev. 119, 3036 (2019), https://doi.org/10.1021/acs.chemrev.8b00539.Search in Google Scholar PubMed
[16] R. Sharif, A. Khalid, S. W. Ahmad, A. Rehman, H. G. Qutab, H. H. Akhtar. Nanoscale Adv. 5, 3803 (2023), https://doi.org/10.1039/d3na00319a.Search in Google Scholar PubMed PubMed Central
[17] A. Sanson, A. Gondolini. Solid oxide fuel cells. in Materials Science and Materials Engineering, Elsevier (2020).10.1016/B978-0-12-818542-1.00007-2Search in Google Scholar
[18] P. Berg. J. Fuel Cell Sci. Technol. 5(2), 021007 (2008).10.1115/1.2821599Search in Google Scholar
[19] S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad. Renewable Sustainable Energy Rev. 79, 750 (2017), https://doi.org/10.1016/j.rser.2017.05.147.Search in Google Scholar
[20] S. Choi, T. C. Davenport, S. M. Haile. Energy Environ. Sci. 12, 206 (2019), https://doi.org/10.1039/c8ee02865f.Search in Google Scholar
[21] C. Duan. Appl. Phys. Rev. 7, 011314 (2020).Search in Google Scholar
[22] W. Zając. Open Chem. 11, 471 (2013).10.2478/s11532-012-0144-9Search in Google Scholar
[23] M. K. Hossain, M. C. Biswas, R. K. Chanda, M. H. K. Rubel, M. I. Khan, K. Hashizume. Emergent Mater. 4, 999 (2021), https://doi.org/10.1007/s42247-021-00230-5.Search in Google Scholar
[24] A. Gondolini, A. Bartoletti, E. Mercadelli, P. Gramazio, A. Fasolini, F. Basile. J. Membr. Sci. 684, 121865 (2023), https://doi.org/10.1016/j.memsci.2023.121865.Search in Google Scholar
[25] B. Dai, G. M. Biesold, M. Zhang, H. Zou, Y. Ding, Z. L. Wang. Chem. Soc. Rev. 50, 13646 (2021), https://doi.org/10.1039/d1cs00506e.Search in Google Scholar PubMed
[26] Y. Hu, Y. Zhang, Y. Chang, R. L. Snyder, Z. L. Wang. ACS Nano 4, 4220 (2010), https://doi.org/10.1021/nn1010045.Search in Google Scholar PubMed
[27] Z. L. Wang. Adv. Mater. 24, 4632 (2012), https://doi.org/10.1002/adma.201104365.Search in Google Scholar PubMed
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy
Articles in the same Issue
- Frontmatter
- Editorial
- The Global Scenario and Challenges of Radioactive Waste in the Marine Environment
- Special topic papers
- A critical review of the quantification, analysis and detection of radionuclides in the environment using diffusive gradients in thin films (DGT): advances and perspectives
- Overview of marine radionuclides from sampling to monitoring
- Radionuclides in marine sediment
- Speciation and mobility of uranium isotopes in the Shu River: impacts for river to sea transfer
- Impact of fluvial discharge on 137Cs in the ocean following the Fukushima Daiichi Nuclear Power Station accident
- Transport of radioactive materials from terrestrial to marine environments in Fukushima over the past decade
- The transfer of irradiated uranium from the Irish Sea coast to the terrestrial environment in Cumbria, UK
- Public knowledge, sentiments, and perceptions of low dose radiation (LDR) and power production, with special reference to reactor accidents
- An exercise-based international polymer syllabus
- Conference paper
- Perovskite: a key structure for a sustainable hydrogen economy