Startseite Simple preparation of silicone rubber Pickering emulsions using silica nanoparticles for water-borne thermal protection coating
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simple preparation of silicone rubber Pickering emulsions using silica nanoparticles for water-borne thermal protection coating

  • Chao Gao EMAIL logo , Chen He , Yibing Zeng , Xiaohui Wu , Xue Yan , Xiaofeng Wu , Chenguang Li , Boqian Li und Anchao Feng EMAIL logo
Veröffentlicht/Copyright: 13. Dezember 2023

Abstract

In this study, we aimed to develop stable silicone rubber Pickering emulsions by employing silica nanoparticles as stabilizers in order to produce a water-borne thermal protection coating. Initially, silica nanoparticles were synthesized using the Stöber method and subsequently functionalized with γ-glycidoxypropyltrimethoxysilane (GTMS). The size and grafting efficiency of the GTMS-modified silica nanoparticles were characterized using transmission electron microscopy and thermogravimetric analysis, respectively. Furthermore, the functionalization mechanism was elucidated by monitoring the pH and Zeta potential of the silica sols. Subsequently, the silicone rubber Pickering emulsion was prepared via the emulsion inversion point method and characterized using transmission electron microscopy. The emulsification process was analyzed by measuring the conductivity of the emulsion during the phase transition. Finally, the water-borne coating was formulated by blending the emulsions with Kaolin, glass fiber, and glass microspheres. The thermal protection performance of the resulting coating was evaluated under typical test conditions, with the highest heat flow reaching 242 kW m−2 for 40 s.


Corresponding authors: Chao Gao, Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076, P.R. China, e-mail: ; and Anchao Feng, Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China, e-mail:
Article note: A collection of invited papers based on presentations at the International Polymer Characterization Forum POLY-CHAR 2023, held as an online meeting based in Auckland 22 January–26 January 2023.

Award Identifier / Grant number: 2019YFE0124300

Funding source: Beijing Nova Program

Award Identifier / Grant number: 20230484260

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: ZK20220198

Funding source: Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology

Award Identifier / Grant number: oic-202103015

Acknowledgments

This research was supported by Aerospace Research Institute of Materials & Processing Technology.

  1. Research funding: This work was funded by International Science and Technology Cooperation Programme (2019YFE0124300), Beijing Nova Program (20230484260), National Natural Science Foundation of China (ZK20220198), Foundation of State Key Laboratory of Organic-Inorganic Composites and Beijing University of Chemical Technology (oic-202103015).

References

[1] D. R. Jenkins. X-15: Extending the Frontiers of Flight[R]. NASA SP-2007-9-001-HQ, 2007.Suche in Google Scholar

[2] R. C. Haefli, E. G. Littler, J. B. Hurley, M. G. Winter. Technology Requirements for Advanced Earth-orbital Transportation Systems[R]. NASA CR-2866, 1977.Suche in Google Scholar

[3] A. B. Price. Design Report – Thermal Protection System X-15A-2[R]. NASA CR-82003, 1967.Suche in Google Scholar

[4] F. D. Bachrtel, J. L. Vaniman, J. M. Stuckey, C. Gray, B. Widofsky. Thermal design of the space shuttle external tank[R]. NASA N85-16977, 1985.Suche in Google Scholar

[5] W. C. Dean. Thermal Support for Space Support[R]. LMSC-HREC TR D496704, 1976.Suche in Google Scholar

[6] K. T. Edquist, A. A. Dyakonov, M. J. Wright, C. Tang. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule[R]. AIAA 2007-1206, 2007.10.2514/6.2007-1206Suche in Google Scholar

[7] R. J. Schwighamer. Materials and Processes for Shuttle Engine, External Tank, and Solid Rocket Booster[R]. NASA TN D-8511, 1977.10.1016/B978-0-08-021710-9.50013-6Suche in Google Scholar

[8] K. T. Edquist, A. A. Dyakonov, M. J. Wright, C. Tang. Aerothermodynamic Design of the Mars Science Laboratory Backshell and Parachute Cone[R]. AIAA 2009-4078, 2009.10.2514/6.2009-4078Suche in Google Scholar

[9] A. O. Barney, C. Anton, J. Crumpler, J. Stanley, J. Bryan, C. Brewer. Low Density Ablator Composition [P]. US: 6627697, 30 Sep 2003.Suche in Google Scholar

[10] J. M. Hank, J. S. Murphy, R. C. Mutzman. The X-51A Scramjet Engine Flight Demonstration Program[R]. AIAA 2008-2540, 2008.10.2514/6.2008-2540Suche in Google Scholar

[11] M. Liu, X. Mao, H. Zhu, A. Lin, D. Wang. Corros. Sci. 75, 106 (2013), https://doi.org/10.1016/j.corsci.2013.05.020.Suche in Google Scholar

[12] M. Bethencourt, F. Botana, M. Cano, R. Osuna, M. Marcos. Prog. Org. Coat. 49, 275 (2004), https://doi.org/10.1016/j.porgcoat.2003.10.009.Suche in Google Scholar

[13] I. Gonzalez, D. Mestach, J. R. Leiza, J. M. Asua. Prog. Org. Coat. 61, 38 (2008), https://doi.org/10.1016/j.porgcoat.2007.09.012.Suche in Google Scholar

[14] D. Song, Z. Yin, F. Liu, H. Wan, J. Gao, D. Zhang, X. Li. Prog. Org. Coat. 110, 182 (2017), https://doi.org/10.1016/j.porgcoat.2017.04.043.Suche in Google Scholar

[15] T. V. Nguyen, P. Nguyen Tri, R. El Aidani, V. T. Trinh, C. Decker. Polym. Degrad. Stabil. 128, 65 (2016), https://doi.org/10.1016/j.polymdegradstab.2016.03.002.Suche in Google Scholar

[16] S. Abend, N. Bonnke, U. Gutschner, G. Lagaly. Colloid Polym. Sci. 276, 730 (1998), https://doi.org/10.1007/s003960050303.Suche in Google Scholar

[17] L. Peng, A. Feng, S. Liu, M. Huo, T. Fang, K. Wang, Y. Wei, X. Wang, J. Yuan. ACS Appl. Mater. Interfaces 8, 29203 (2016), https://doi.org/10.1021/acsami.6b09920.Suche in Google Scholar PubMed

[18] A. Şerbescu, K. Saalwächter. Polymer 50, 5434 (2009), https://doi.org/10.1016/j.polymer.2009.09.063.Suche in Google Scholar

[19] P. Greenwood, B. Gevert. Pigm. Resin Technol. 40, 275 (2011), https://doi.org/10.1108/03699421111176171.Suche in Google Scholar

[20] H. L. Chang, H. P. Sun, W. Chung, J. Y. Kim, S. H. Kim. Colloids Surf. A Physicochem. Eng. Asp. 384, 318 (2011), https://doi.org/10.1016/j.colsurfa.2011.04.010.Suche in Google Scholar

[21] M. Sivanandini, M. Dhami, S. S. Dhami, B. S. Pabla. Int. J. Res. Pharm. Chem. 5, 167 (2015).Suche in Google Scholar

[22] Y. Lei. Silicone/Silica Nanocomposites Latex and High Temperature-Resistant Latex Paint, Chinese Master’s Thesis, Tianjin (2013).Suche in Google Scholar

Published Online: 2023-12-13
Published in Print: 2024-02-26

© 2023 IUPAC & De Gruyter

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2023-0805/html
Button zum nach oben scrollen