Thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) brushes as substrate-independent release coatings for cell culture and selective cell separation and purification
Abstract
A systematic study on the surface-initiated polymerization of di(ethylene glycol) methyl ether methacrylate (DEGMA) by atom transfer radical polymerization (ATRP) from glass, silicon, titanium as well as tissue culture polystyrene (TCPS) is reported in an attempt to expand the known thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) cell release layers on gold to other substrates. The use of these substrate materials requires an altered immobilization chemistry to couple a bromide containing ATRP initiator to the surfaces. Using aminosilanes or polydopamine as coupling layers for the attachment of α-bromoisobutyryl bromide (BiBB) and the direct functionalization of surface hydroxyl groups with trichlorosilane-functionalized ATRP initiators all surfaces studied were shown to facilitate the growth of PDEGMA brushes using the same conditions that were reported previously for polymerization on gold. The brush layers obtained were characterized systematically using wetting, ellipsometry, X-ray photoelectron spectroscopy (XPS) as well as atomic force microscopy (AFM) analyses. Selective cell release and separation of PaTu 8988t and NIH 3T3 cells, which are known to exhibit different behavior after temperature drop-induced brush swelling, was observed for all substrates, albeit for different brush thicknesses, implying variations in initiator and also PDEGMA grafting density. The successful modification of biomedically relevant materials (Ti and TCPS) implies that the previously reported stem cell purification and selective cell release of various cell types, which is facilitated by PDEGMA brushes, can be realized and consequently scaled up in the future.
Funding source: Universität Siegen
Funding source: European Regional Development Fund (EFRE)
Award Identifier / Grant number: project number EFRE0400308
Acknowledgment
The authors acknowledge Dr. Siyu Jiang for stimulating discussions as well as funding by the European Regional Development Fund (EFRE) under project number EFRE0400308 and the University of Siegen. Part of this work was performed at the Micro- and Nanoanalytics Facility (MNaF) at the University of Siegen.
-
Research ethics: The DFG rules of good scientific practice were followed.
-
Author contributions: HS and MM: Conceptualization, AS, DW and MM: methodology, AS and DW: formal analysis, AS, and DW: investigation, HS: resources, AS, DW: data curation, AS and DW: writing—original draft preparation, HS, MM: writing—review and editing, AS, DW and MM: visualization, HS and MM: supervision, HS, DW and MM: project administration, HS and MM: funding acquisition, HS. All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare no conflict of interest.
-
Research funding: The authors acknowledge financial support by the European Regional Development Fund (EFRE) under project number EFRE0400308 and the University of Siegen.
-
Data availability: The data presented in this study are available in this article (and supplementary material) or on request from the corresponding authors.
References
[1] Y. Arima, H. Iwata. J. Mater. Chem. 17(38), 4079 (2007), https://doi.org/10.1039/b708099a.Search in Google Scholar
[2] S. Gupta, T. J. Webster, A. Sinha. J. Mater. Sci.: Mater. Med. 22(7), 1763 (2011), https://doi.org/10.1007/s10856-011-4343-2.Search in Google Scholar
[3] A. Kikuchi, M. Okuhara, F. Karikusa, Y. Sakurai, T. Okano. J. Biomater. Sci., Polym. Ed. 9(12), 1331 (1998), https://doi.org/10.1163/156856298x00424.Search in Google Scholar
[4] M. Lampin, R. Warocquier-Clérout, C. Legris, M. Degrange, M. F. Sigot-Luizard. J. Biomed. Mater. Res. 36(1), 99 (1997), https://doi.org/10.1002/(sici)1097-4636(199707)36:1<99::aid-jbm12>3.0.co;2-e.10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-ESearch in Google Scholar
[5] K. Duval, H. Grover, L.-H. Han, Y. Mou, A. F. Pegoraro, J. Fredberg, Z. Chen. Physiology 32(4), 266 (2017), https://doi.org/10.1152/physiol.00036.2016.Search in Google Scholar
[6] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. in Molecular Biology of The Cell, Garland Science, New York, 4th ed. (2002).Search in Google Scholar
[7] B. G. Keselowsky, D. M. Collard, A. J. García. J. Biomed. Mater. Res. 66A(2), 247 (2003), https://doi.org/10.1002/jbm.a.10537.Search in Google Scholar
[8] M. Arnold, E. A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, J. P. Spatz. ChemPhysChem 5(3), 383 (2004), https://doi.org/10.1002/cphc.200301014.Search in Google Scholar
[9] Y. Chen, L. Ju, M. Rushdi, C. Ge, C. Zhu. Mol. Biol. Cell 28(23), 3134 (2017), https://doi.org/10.1091/mbc.e17-04-0228.Search in Google Scholar
[10] J. Solon, I. Levental, K. Sengupta, P. C. Georges, P. A. Janmey. Biophys. J. 93(12), 4453 (2007), https://doi.org/10.1529/biophysj.106.101386.Search in Google Scholar
[11] T. H. Kim, D. B. An, S. H. Oh, M. K. Kang, H. H. Song, J. H. Lee. Biomaterials 40, 51 (2015), https://doi.org/10.1016/j.biomaterials.2014.11.017.Search in Google Scholar
[12] Y. Hu, J.-O. You, J. Aizenberg. ACS Appl. Mater. Interfaces 8(34), 21939 (2016), https://doi.org/10.1021/acsami.5b12268.Search in Google Scholar PubMed
[13] O. Guillaume-Gentil, O. V. Semenov, A. H. Zisch, R. Zimmermann, J. Vörös, M. Ehrbar. Biomaterials 32(19), 4376 (2011), https://doi.org/10.1016/j.biomaterials.2011.02.058.Search in Google Scholar PubMed
[14] M. W. Tibbitt, K. S. Anseth. Biotechnol. Bioeng. 103(4), 655 (2009), https://doi.org/10.1002/bit.22361.Search in Google Scholar PubMed PubMed Central
[15] H.-L. Huang, H.-W. Hsing, T.-C. Lai, Y.-W. Chen, T.-R. Lee, H.-T. Chan, P.-C. Lyu, C.-L. Wu, Y.-C. Lu, S.-T. Lin, C.-W. Lin, C.-H. Lai, H.-T. Chang, H.-C. Chou, H.-L. Chan. J. Biomed. Sci. 17(1), 36 (2010), https://doi.org/10.1186/1423-0127-17-36.Search in Google Scholar PubMed PubMed Central
[16] N. Fujioka, Y. Morimoto, K. Takeuchi, M. Yoshioka, M. Kikuchi. Appl. Spectrosc. 57(2), 241 (2003), https://doi.org/10.1366/000370203321535187.Search in Google Scholar PubMed
[17] N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai. Macromol. Rapid Commun. 11(11), 571 (1990), https://doi.org/10.1002/marc.1990.030111109.Search in Google Scholar
[18] Y. Voß, E. Wassel, S. Jiang, Q. Song, S. I. Druzhinin, H. Schönherr. Macromol. Biosci. 17(4), 1600337 (2017), https://doi.org/10.1002/mabi.201600337.Search in Google Scholar PubMed
[19] K. Fukumori, Y. Akiyama, Y. Kumashiro, J. Kobayashi, M. Yamato, K. Sakai, T. Okano. Macromol. Biosci. 10(10), 1117 (2010), https://doi.org/10.1002/mabi.201000043.Search in Google Scholar PubMed
[20] Y. Akiyama, A. Kikuchi, M. Yamato, T. Okano. Langmuir 20(13), 5506 (2004), https://doi.org/10.1021/la036139f.Search in Google Scholar PubMed
[21] S. Han, M. Hagiwara, T. Ishizone. Macromolecules 36(22), 8312 (2003), https://doi.org/10.1021/ma0347971.Search in Google Scholar
[22] A. M. Jonas, K. Glinel, R. Oren, B. Nysten, W. T. S. Huck. Macromolecules 40(13), 4403 (2007), https://doi.org/10.1021/ma070897l.Search in Google Scholar
[23] S. Großhans, I. Lilge, H. Schönherr. Macromol. Biosci. 18(2), 1700317 (2018), https://doi.org/10.1002/mabi.201700317.Search in Google Scholar PubMed
[24] E. Wassel, S. Jiang, Q. Song, S. Vogt, G. Nöll, S. I. Druzhinin, H. Schönherr. Langmuir 32(36), 9360 (2016), https://doi.org/10.1021/acs.langmuir.6b02708.Search in Google Scholar PubMed
[25] H. Choi, A. Schulte, M. Müller, M. Park, S. Jo, H. Schönherr. Adv. Healthc. Mater. 10, 2100069 (2021), https://doi.org/10.1002/adhm.202100069.Search in Google Scholar PubMed
[26] S. Müller, A. Cavallaro, K. Vasilev, N. H. Voelcker, H. Schönherr. Macromol. Chem. Phys. 217(20), 2243 (2016), https://doi.org/10.1002/macp.201600099.Search in Google Scholar
[27] S. Jiang, B. Lyu, M. Müller, D. Wesner, H. Schönherr. Langmuir 34(48), 14670 (2018), https://doi.org/10.1021/acs.langmuir.8b03040.Search in Google Scholar PubMed
[28] S. Jiang, M. Müller, H. Schönherr. ACS Appl. Bio Mater. 2(6), 2557 (2019), https://doi.org/10.1021/acsabm.9b00252.Search in Google Scholar PubMed
[29] S. Jiang, M. Müller, H. Schönherr. Angew. Chem., Int. Ed. 58(31), 10563 (2019), https://doi.org/10.1002/anie.201903299.Search in Google Scholar PubMed
[30] K. Nagase, A. Kimura, T. Shimizu, K. Matsuura, M. Yamato, N. Takeda, T. Okano. J. Mater. Chem. 22(37), 19514 (2012), https://doi.org/10.1039/c2jm31797d.Search in Google Scholar
[31] K. Nagase, Y. Hatakeyama, T. Shimizu, K. Matsuura, M. Yamato, N. Takeda, T. Okano. Biomacromolecules 14(10), 3423 (2013), https://doi.org/10.1021/bm4006722.Search in Google Scholar PubMed
[32] D. M. Jones, A. A. Brown, W. T. S. Huck. Langmuir 18(4), 1265 (2002), https://doi.org/10.1021/la011365f.Search in Google Scholar
[33] S. Lee, J. Hong. Jpn. J. Appl. Phys. 39(1), 241–244, (2000), https://doi.org/10.1143/jjap.39.241.Search in Google Scholar
[34] D. Hafner, R. Jordan. Polym. Chem. 11(12), 2129 (2020), https://doi.org/10.1039/c9py01343a.Search in Google Scholar
[35] J. Liebscher, R. Mrówczyński, H. A. Scheidt, C. Filip, N. D. Hădade, R. Turcu, A. Bende, S. Beck. Langmuir 29(33), 10539 (2013), https://doi.org/10.1021/la4020288.Search in Google Scholar PubMed
[36] Y. Ding, L.-T. Weng, M. Yang, Z. Yang, X. Lu, N. Huang, Y. Leng. Langmuir 30(41), 12258 (2014), https://doi.org/10.1021/la5026608.Search in Google Scholar PubMed
[37] B.-Y. Yu, J. Zheng, Y. Chang, M.-C. Sin, C.-H. Chang, A. Higuchi, Y.-M. Sun. Langmuir 30(25), 7502 (2014), https://doi.org/10.1021/la500917s.Search in Google Scholar PubMed
[38] R. G. Acres, A. V. Ellis, J. Alvino, C. E. Lenahan, D. A. Khodakov, G. F. Metha, G. G. Andersson. J. Phys. Chem. C 116, 6289 (2012), https://doi.org/10.1021/jp212056s.Search in Google Scholar
[39] D. F. Siqueira Petri, G. Wenz, P. Schunk, T. Schimmel. Langmuir 15(13), 4520 (1999), https://doi.org/10.1021/la981379u.Search in Google Scholar
[40] T. G. Ribelli, F. Lorandi, M. Fantin, K. Matyjaszewski. Macromol. Rapid Commun. 40(1), 1800616 (2019), https://doi.org/10.1002/marc.201800616.Search in Google Scholar PubMed
[41] J. Z. Kechagia, J. Ivaska, P. Roca-Cusachs. Nat. Rev. Mol. Cell Biol. 20(8), 457 (2019), https://doi.org/10.1038/s41580-019-0134-2.Search in Google Scholar PubMed
[42] D. V. Iwamoto, D. A. Calderwood. Curr. Opin. Cell Biol. 36, 41 (2015), https://doi.org/10.1016/j.ceb.2015.06.009.Search in Google Scholar PubMed PubMed Central
[43] E. A. Cavalcanti-Adam, D. Aydin, V. C. Hirschfeld-Warneken, J. P. Spatz. HFSP journal 2(5), 276 (2008), https://doi.org/10.2976/1.2976662.Search in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2023-1007).
© 2024 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface for joint special issue of POLY-CHAR 2023 in Auckland, New Zealand and in memory of Professor Melissa Chan Chin Han
- Conference papers
- Simple preparation of silicone rubber Pickering emulsions using silica nanoparticles for water-borne thermal protection coating
- Thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) brushes as substrate-independent release coatings for cell culture and selective cell separation and purification
- The preparation of permanent antistatic additive based on poly(ether-b-amide) copolymers and its modification effect on polyamide 6
- Special topic papers
- Indentation creep in polymers and polymer nanocomposites
- What is science?
- Analysis of individual nanoscale block copolymer vesicles by atomic force microscopy combined with time-resolved fluorescence microscopy
- Green chemistry route to chitosan hydrogels and investigation of the materials as efficient dye adsorbents
- Flexible polymer networks: rubber elasticity and segmental orientation
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Preface for joint special issue of POLY-CHAR 2023 in Auckland, New Zealand and in memory of Professor Melissa Chan Chin Han
- Conference papers
- Simple preparation of silicone rubber Pickering emulsions using silica nanoparticles for water-borne thermal protection coating
- Thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) brushes as substrate-independent release coatings for cell culture and selective cell separation and purification
- The preparation of permanent antistatic additive based on poly(ether-b-amide) copolymers and its modification effect on polyamide 6
- Special topic papers
- Indentation creep in polymers and polymer nanocomposites
- What is science?
- Analysis of individual nanoscale block copolymer vesicles by atomic force microscopy combined with time-resolved fluorescence microscopy
- Green chemistry route to chitosan hydrogels and investigation of the materials as efficient dye adsorbents
- Flexible polymer networks: rubber elasticity and segmental orientation