Startseite Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide

  • Claire Buchanan , Mark G. Hinds , Ljiljana Puskar , Christopher J. Garvey und Adam Mechler ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. Oktober 2021

Abstract

Substituted β3 oligoamides form a unique self-assembling system where each monomer folds into a helix containing approximately three β3 amino acids per turn, yielding a geometrically well-defined cylindrical building block that, when N-acylated, is able to self-assemble head-to-tail into nanorods that can reach several 100 μm length. It was shown in previous works that self-assembly can be achieved with a three residue long oligoamide as well that lacks any intramolecular H-bonds, yet it crystallizes in a helix-like conformation. The self-assembly properties of these small oligoamides are however elusive, suggesting a more complex system than the self-assembly of the H-bond stabilized helical monomers. Here we focus on the self-assembly behaviour of a three residue oligoamide, Ac-β3[LIA] where the letters denote the side chain of the analogous α amino acid. Ac-β3[LIA] can yield highly inhomogeneous suspensions in water with a broad range of large fibrous structures that seem to be very stable, yet occasionally fibre growth is only observed upon heating. The small size of the monomer suggests a highly dynamic equilibrium yet all previous attempts failed to clearly identify low molecular weight species. Therefore a special methodology was employed in this study to characterize the suspensions at different size ranges: SANS that is optimal to measure the small oligomers and cross sectional diameter of the assemblies, DLS that is sensitive to the large populations and therefore the length of the superstructures, and NMR that is sensitive to monomeric and small oligomeric form, in conjunction with IR spectroscopy to probe the folding and AFM to image the morphology of the assemblies. Temperature ramping was used to perturb the system to probe the dynamicity of the self-assembly. It was found that the anomalous self-assembly behaviour of Ac-β3[LIA] is caused by its two stable conformations, a helix-building “horseshoe” fold and a linear conformer. The latter is exclusively found in monomeric form in solution whereas the horseshoe fold is stable in solid phase and in fibrous assemblies. Small oligomers were absent. Thus the self-assembly of Ac-β3[LIA] is arrested by the activation energy need of the conformation change; fibre growth might be triggered by conditions that allow increased conformational freedom of the monomers. This observation may be used to develop strategies for controlled switchable self-assembly.


Corresponding author: Adam Mechler, Department of Chemistry and Physics, Latrobe University, Bundoora, Australia, e-mail:

Article note: A collection of invited papers based on presentations at the 5th International Conference on Bioinspired and Biobased Chemistry and Materials & 2nd International Conference on Optics, Photonics, & Materials (NICE 2020) held in Nice, France and online, Oct. 12–14, 2020.


References

[1] D. Seebach, J. L. Matthews. Chem. Commun. 21, 2015 (1997), doi:https://doi.org/10.1039/a704933a.Suche in Google Scholar

[2] R. P. Cheng, S. H. Gellman, W. F. DeGrado. Chem. Rev. 101, 3219 (2001), https://doi.org/10.1021/cr000045i.Suche in Google Scholar

[3] S. H. Gellman. Acc. Chem. Res. 31, 173 (1998), https://doi.org/10.1021/ar960298r.Suche in Google Scholar

[4] D. Seebach, M. Overhand, F. N. M. Kuhnle, B. Martinoni, L. Oberer, U. Hommel, H. Widmer. Helv. Chim. Acta 79, 913 (1996), https://doi.org/10.1002/hlca.19960790402.Suche in Google Scholar

[5] S. Abele, P. Seiler, D. Seebach. Helv. Chim. Acta 82, 1559 (1999), https://doi.org/10.1002/(sici)1522-2675(19991006)82:10<1559::aid-hlca1559>3.0.co;2-a.10.1002/(SICI)1522-2675(19991006)82:10<1559::AID-HLCA1559>3.0.CO;2-ASuche in Google Scholar

[6] W. S. Horne, S. H. Gellman. Acc. Chem. Res. 41, 1399 (2008), https://doi.org/10.1021/ar800009n.Suche in Google Scholar

[7] D. H. Appella, L. A. Christianson, D. A. Klein, M. R. Richards, D. R. Powell, S. H. Gellman. J. Am. Chem. Soc. 121, 7574 (1999), https://doi.org/10.1021/ja991185g.Suche in Google Scholar

[8] D. Seebach, K. Gademann, J. V. Schreiber, J. L. Matthews, T. Hintermann, B. Jaun, L. Oberer, U. Hommel, H. Widmer. Helv. Chim. Acta 80, 2033 (1997), https://doi.org/10.1002/hlca.19970800703.Suche in Google Scholar

[9] T. L. Raguse, J. R. Lai, P. R. LePlae, S. H. Gellman. Org. Lett. 3, 3963 (2001), https://doi.org/10.1021/ol016868r.Suche in Google Scholar

[10] D. H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell, S. H. Gellman. J. Am. Chem. Soc. 118, 13071 (1996), https://doi.org/10.1021/ja963290l.Suche in Google Scholar

[11] T. L. Raguse, J. R. Lai, S. H. Gellman. J. Am. Chem. Soc. 125, 5592 (2003), https://doi.org/10.1021/ja0341485.Suche in Google Scholar PubMed

[12] D. H. Appella, L. A. Christianson, D. A. Klein, D. R. Powell, X. L. Huang, J. J. Barchi, S. H. Gellman. Nature 387, 381 (1997), https://doi.org/10.1038/387381a0.Suche in Google Scholar PubMed

[13] R. S. Seoudi, M. G. Hinds, D. J. D. Wilson, C. G. Adda, M. Del Borgo, M.-I. Aguilar, P. Perlmutter, A. Mechler. Nanotechnology 27, 135606 (2016), doi:https://doi.org/10.1088/0957-4484/27/13/135606.Suche in Google Scholar PubMed

[14] R. D. Gopalan, M. P. Del Borgo, A. I. Mechler, P. Perlmutter, M. I. Aguilar. Chem. Biol. 22, 1417 (2015), https://doi.org/10.1016/j.chembiol.2015.10.005.Suche in Google Scholar PubMed

[15] M. P. Del Borgo, A. I. Mechler, D. Traore, C. Forsyth, J. A. Wilce, M. C. J. Wilce, M. I. Aguilar, P. Perlmutter. Angew. Chem. Int. Ed. 52, 8266 (2013).10.1002/anie.201303175Suche in Google Scholar PubMed

[16] R. S. Seoudi, A. Dowd, B. J. Smith, A. Mechler. Phys. Chem. Chem. Phys. 18, 11467 (2016), https://doi.org/10.1039/c6cp01355d.Suche in Google Scholar PubMed

[17] R. S. Seoudi, A. Dowd, M. Del Borgo, K. Kulkarni, P. Perlmutter, M. I. Aguilar, A. Mechler. Pure Appl. Chem. 87, 1021 (2015), https://doi.org/10.1515/pac-2015-0108.Suche in Google Scholar

[18] R. S. Seoudi, M. P. Del Borgo, K. Kulkarni, P. Perlmutter, M. I. Aguilar, A. Mechler. New J. Chem. 39, 3280 (2015), https://doi.org/10.1039/c4nj01926a.Suche in Google Scholar

[19] A. Mechler, R. Seoudi, M. P. Del Borgo, M.-I. Aguilar, P. Perlmutter. Micro/Nano Mater. Dev. Syst. 8923, 21 (2013).Suche in Google Scholar

[20] C. Buchanan, C. J. Garvey, L. Puskar, P. Perlmutter, A. Mechler. Supramol. Chem. 32, 222 (2020), https://doi.org/10.1080/10610278.2020.1730839.Suche in Google Scholar

[21] C. Buchanan, C. J. Garvey, P. Perlmutter, A. Mechler. Pure Appl. Chem. 89, 1809 (2017), https://doi.org/10.1515/pac-2017-0709.Suche in Google Scholar

[22] N. G. West, R. S. Seoudi, A. J. Barlow, D. C. Qi, L. Puskar, M. P. Del Borgo, K. Kulkarni, C. G. Adda, J. Pan, M. I. Aguilar, P. Perlmutter. Mater. Adv. 1, 3605 (2020) (vol. 1, p. 1134, 2020), https://doi.org/10.1039/d0ma90046j.Suche in Google Scholar

[23] N. G. West, R. S. Seoudi, A. J. Barlow, D. C. Qi, L. Puskar, M. P. Del Borgo, K. Kulkarni, C. G. Adda, J. Pan, M. I. Aguilar, P. Perlmutter. Mater. Adv. 1, 1134 (2020), https://doi.org/10.1039/d0ma00123f.Suche in Google Scholar

[24] S. R. Kline. J. Appl. Crystallogr. 39, 895 (2006), https://doi.org/10.1107/s0021889806035059.Suche in Google Scholar

[25] J. Ilavsky, P. R. Jemian. J. Appl. Crystallogr. 42, 347 (2009), https://doi.org/10.1107/s0021889809002222.Suche in Google Scholar

[26] D. Svergun, C. Barberato, M. H. J. Koch. J. Appl. Crystallogr. 28, 768 (1995), https://doi.org/10.1107/s0021889895007047.Suche in Google Scholar

[27] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin. J. Comput. Chem. 25, 1605 (2004), https://doi.org/10.1002/jcc.20084.Suche in Google Scholar PubMed

[28] D. S. Wishart, C. G. Bigam, J. Yao, F. Abildgaard, H. J. Dyson, E. Oldfield, J. L. Markley, B. D. Sykes. J. Biomol. NMR 6, 135 (1995), https://doi.org/10.1007/bf00211777.Suche in Google Scholar PubMed

[29] R. Evans, G. Dal Poggetto, M. Nilsson, G. A. Morris. Anal. Chem. 90, 3987 (2018), https://doi.org/10.1021/acs.analchem.7b05032.Suche in Google Scholar PubMed

[30] L. A. Feigin, D. I. Svergun. in Structure Analysis by Small-Angle X-ray and Neutron scattering, G. W. Taylor (Ed.), Plenum, New York (1987).10.1007/978-1-4757-6624-0Suche in Google Scholar

[31] D. Neuhaus, M. Williamson. J. Prakt. Chem. 332, 658 (1990).10.1002/prac.19903320511Suche in Google Scholar

[32] H. X. Pei, M. W. Germann, S. A. Allison. J. Phys. Chem. B 113, 9326 (2009), https://doi.org/10.1021/jp902143q.Suche in Google Scholar PubMed

[33] J. Danielsson, J. Jarvet, P. Damberg, A. Graslund. Magn. Reson. Chem. 40, S89 (2002), https://doi.org/10.1002/mrc.1132.Suche in Google Scholar

[34] T. Cierpicki, J. Otlewski. J. Biomol. NMR 21, 249 (2001), https://doi.org/10.1023/a:1012911329730.10.1023/A:1012911329730Suche in Google Scholar

[35] J. Kong, S. Yu. Acta Biochim. Biophys. Sin. 39, 549 (2007), https://doi.org/10.1111/j.1745-7270.2007.00320.x.Suche in Google Scholar PubMed

[36] A. Barth. Biochim. Biophys. Acta Bioenerg. 1767, 1073 (2007).10.1016/j.bbabio.2007.06.004Suche in Google Scholar PubMed

[37] A. Barth, C. Zscherp. Q. Rev. Biophys. 35, 369 (2002), https://doi.org/10.1017/s0033583502003815.Suche in Google Scholar PubMed

[38] B. Vasantha, H. Yamanappa, S. Raghothama, P. Balaram. Pept. Sci. 108, e23011 (2017), doi:https://doi.org/10.1002/bip.23011.Suche in Google Scholar PubMed

[39] L. Dutot, A. Gaucher, K. Elkassimi, J. Drapeau, M. Wakselman, J.-P. Mazaleyrat, C. Peggion, F. Formaggio, C. Toniolo. Chem. Eur J. 14, 3154 (2008), https://doi.org/10.1002/chem.200701360.Suche in Google Scholar PubMed

[40] T. L. Jansen, A. G. Dijkstra, T. M. Watson, J. D. Hirst, J. Knoester. J. Chem. Phys. 125, 9 (2006), https://doi.org/10.1063/1.2218516.Suche in Google Scholar PubMed

[41] M. Wolpert, P. Hellwig. Spectrochim Acta A 64, 987 (2006), https://doi.org/10.1016/j.saa.2005.08.025.Suche in Google Scholar PubMed

[42] A. Barth. Prog. Biophys. Mol. Biol. 74, 141 (2000), https://doi.org/10.1016/s0079-6107(00)00021-3.Suche in Google Scholar

Published Online: 2021-10-19
Published in Print: 2021-11-25

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0324/html
Button zum nach oben scrollen