Study of the influence of autoclave sterilization on the properties of citrate functionalized iron oxide nanoparticles
-
Thomas Girardet
, Amel Cherraj
, Astrid Pinzano , Christel Henrionnet , Franck Cleymand and Solenne Fleutot
Abstract
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are widely used in various areas of the biomedical field: for diagnosis (Magnetic Resonance Imaging), for therapeutic applications (hyperthermia, nanovectorization). These applications require a good stability in water and no aggregation of SPIONs, with well-controlled physicochemical and magnetic properties. In this work, SPIONs functionalized by citrate ligands are synthesized in a one-step process with the aim of producing stable water-dispersible nanoparticles with a well-crystallized spinel structure. Microwave technology is implemented to achieve this objective given the ease, speed and reproducibility of the method. For their future use in biomedical applications, the sterilization of these SPIONs are essential by an autoclave treatment. The influence of this treatment on the physicochemical and magnetic properties of the SPIONs is determined by a systematic characterization before and after sterilization by Transmission Electronic Microscopy, Dynamic Light Scattering, X-ray Diffraction, Fourier Transformed Infra-Red, ThermoGravimetric Analysis and magnetic measurements.
Acknowledgments
We would like to acknowledge the 3M, X-Gamma and Magnetism Competence Centers of Institute Jean Lamour for assistance in TEM, X-ray diffraction and magnetism experiments.
References
[1] R. Ortega-Villar, L. Lizárraga-Mendiola, C. Coronel-Olivares, L. D. López-León, C. A. Bigurra-Alzati, G. A. Vázquez-Rodríguez. J. Environ. Manag. 242, 487 (2019), https://doi.org/10.1016/j.jenvman.2019.04.104.Search in Google Scholar PubMed
[2] J. Peng, W. Zhang, L. Chen, T. Wu, M. Zheng, H. Dong, H. Hu, Y. Xiao, Y. Liu, Y. Liang. Chem. Eng. J. 404, 126461 (2021), https://doi.org/10.1016/j.cej.2020.126461.Search in Google Scholar
[3] S. Laurent, S. Dutz, U. O. Häfeli, M. Mahmoudi. Adv. Colloid Interface Sci. 166, 8 (2011), https://doi.org/10.1016/j.cis.2011.04.003.Search in Google Scholar PubMed
[4] S. Mornet, S. Vasseur, F. Grasset, E. Duguet. J. Mater. Chem. 14, 2161 (2004), https://doi.org/10.1039/b402025a.Search in Google Scholar
[5] A.-H. Lu, E. L. Salabas, F. Schüth. Angew. Chem. Int. Ed. 46, 1222 (2007), https://doi.org/10.1002/anie.200602866.Search in Google Scholar PubMed
[6] W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim. Sci. Technol. Adv. Mater. 16, 023501 (2015), https://doi.org/10.1088/1468-6996/16/2/023501.Search in Google Scholar PubMed PubMed Central
[7] L. Babes, B. Denizot, G. Tanguy, J. J. Le Jeune, P. Jallet. J. Colloid Interface Sci. 212, 474 (1999), https://doi.org/10.1006/jcis.1998.6053.Search in Google Scholar PubMed
[8] C. Corot, P. Robert, J. Idee, M. Port. Adv. Drug Deliv. Rev. 58, 1471 (2006), https://doi.org/10.1016/j.addr.2006.09.013.Search in Google Scholar PubMed
[9] U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia. Adv. Mater. 19, 33 (2007), https://doi.org/10.1002/adma.200600674.Search in Google Scholar
[10] R. Qiao, C. Yang, M. Gao. J. Mater. Chem. 19, 6274 (2009), https://doi.org/10.1039/b902394a.Search in Google Scholar
[11] M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen. Adv. Drug Deliv. Rev. 63, 24 (2011), https://doi.org/10.1016/j.addr.2010.05.006.Search in Google Scholar PubMed
[12] K. Niemirowicz, K. H. Markiewicz, A. Z. Wilczewska, H. Car. Adv. Med. Sci. 52, 196 (2012), https://doi.org/10.2478/v10039-012-0031-9.Search in Google Scholar PubMed
[13] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller. Chem. Rev. 108, 2064 (2008), https://doi.org/10.1021/cr068445e.Search in Google Scholar PubMed
[14] H. D. Do, T. T. H. Le, H. N. Pham, P. T. Ha. Adv. Nat. Sci. Nanosci. Nanotechnol. 10, 015008 (2019), https://doi.org/10.1088/2043-6254/ab0282.Search in Google Scholar
[15] C. Yue-Jian, T. juan, X. Fei, Z. Jia-Bi, G. Ning, Z. Yi-Hua, D. Ye, G. Liang. Drug Dev. Ind. Pharm. 36, 1235 (2010), https://doi.org/10.3109/03639041003710151.Search in Google Scholar PubMed
[16] O. A. Abu-Noqta, A. A. Aziz, A. I. Usman. Mater. Today Proc. 17, 1072 (2019), https://doi.org/10.1016/j.matpr.2019.06.516.Search in Google Scholar
[17] J.-B. Qu, H.-H. Shao, G.-L. Jing, F. Huang. Colloids Surf. B Biointerfaces 102, 37 (2013), https://doi.org/10.1016/j.colsurfb.2012.08.004.Search in Google Scholar PubMed
[18] M. E. de Sousa, M. B. Fernández van Raap, P. C. Rivas, P. Mendoza Zélis, P. Girardin, G. A. Pasquevich, J. L. Alessandrini, D. Muraca, F. H. Sánchez. J. Phys. Chem. C 117, 5436 (2013), https://doi.org/10.1021/jp311556b.Search in Google Scholar
[19] H. B. Na, G. Palui, J. T. Rosenberg, X. Ji, S. C. Grant, H. Mattoussi. ACS Nano 6, 389 (2012), https://doi.org/10.1021/nn203735b.Search in Google Scholar PubMed
[20] S. Dutz, S. Wojahn, C. Gräfe, A. Weidner, J. Clement. Nanomaterials 7, 453 (2017), https://doi.org/10.3390/nano7120453.Search in Google Scholar PubMed PubMed Central
[21] Li, L., Mak, K. Y., Shi, J., Leung, C. H., Wong, C. M., Leung, C. W., Mak, C. S. K., Chan, K. Y., Chan, N. M. M., Wu, E. X., Pong, P. W. T., Microelectron. Eng. 111 (2013) 310, doi:https://doi.org/10.1016/j.mee.2013.02.021.Search in Google Scholar
[22] Konan, Y. N., Gurny, R., Alléman, E., Int. J. Pharm. 233 (2002) 239, doi:https://doi.org/10.1016/s0378-5173(01)00944-9.Search in Google Scholar
[23] Y. Gu, F. Xiao, L. Luo, X. Zhou, X. Zhou, J. Li, Z. Li. Nanomaterials 10, 18 (2019), https://doi.org/10.3390/nano10010018.Search in Google Scholar
[24] P. Sommerfeld, U. Schroeder, B. A. Sabel. Int. J. Pharm. 164, 113 (1998), https://doi.org/10.1016/s0378-5173(97)00394-3.Search in Google Scholar
[25] P. Venturini, S. Fleutot, F. Cleymand, T. Hauet, J. Dupin, J. Ghanbaja, H. Martinez, J. Robin, V. Lapinte. ChemistrySelect 3, 11898 (2018), https://doi.org/10.1002/slct.201802234.Search in Google Scholar
[26] M. D. Abràmoff, P. J. Magalhães, S. J. Ram. Biophot. Int., 36 (2004).Search in Google Scholar
[27] P. Gravereau. Introduction à la pratique de la diffraction des rayons X par les poudres, 3rd ed. (2011).Search in Google Scholar
[28] J. Lim, S. P. Yeap, H. X. Che, S. C. Low. Nanoscale Res. Lett. 8, 381 (2013), https://doi.org/10.1186/1556-276x-8-381.Search in Google Scholar
[29] Kim, W., Suh, C.-Y., Cho, S.-W., Roh, K.-M., Kwon, H., Song, K., Shon, I.-J., Talanta 94 (2012) 348, doi:https://doi.org/10.1016/j.talanta.2012.03.001.Search in Google Scholar PubMed
[30] Nigam, S., Barick, K. C., Bahadur, D., J. Magn. Magn Mater. 323 (2011) 237, doi:https://doi.org/10.1016/j.jmmm.2010.09.009.Search in Google Scholar
[31] A. M. Predescu, E. Matei, A. C. Berbecaru, C. Pantilimon, C. Drăgan, R. Vidu, C. Predescu, V. Kuncser. R. Soc. Open Sci. 5, 171525 (2018), https://doi.org/10.1098/rsos.171525.Search in Google Scholar PubMed PubMed Central
[32] N. Ohannesian, C. T. De Leo, K. S. Martirosyan. Mater. Today Proc. 13, 397 (2019), https://doi.org/10.1016/j.matpr.2019.03.172.Search in Google Scholar
[33] G. Kandasamy, D. Maity. Int. J. Pharm. 496, 191 (2015), https://doi.org/10.1016/j.ijpharm.2015.10.058.Search in Google Scholar PubMed
[34] Y. Wu, Z. Lu, Y. Li, J. Yang, X. Zhang. Nanomaterials 10, 1441 (2020), https://doi.org/10.3390/nano10081441.Search in Google Scholar PubMed PubMed Central
[35] I. J. Bruvera, P. Mendoza Zelis, M. Pilar Calatayud, G. F. Goya, F. H. Sánchez. J. Appl. Phys. 118, 184304 (2015), https://doi.org/10.1063/1.4935484.Search in Google Scholar
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Bioinspired and biobased chemistry & materials (N.I.C.E. 2020): onsite and online hybrid conference
- Conference papers
- Vapor bubble induced electric current generation
- Photochemistry of phthalocyanine based on spin angular momenta: a kinetic study of fluorescent probes for ascorbic acid
- Study of the influence of autoclave sterilization on the properties of citrate functionalized iron oxide nanoparticles
- What defines biomimetic and bioinspired science and engineering?
- Orthogonal chemistry in the design of rare-earth metal oxyhydrides
- Highly conjugated carbazole-based monomers for the control of nanotubular surface structures by soft template electropolymerization
- Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane
- Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide
- Invited paper
- Gender gap in science in Africa: experience of African women in mathematics association
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Bioinspired and biobased chemistry & materials (N.I.C.E. 2020): onsite and online hybrid conference
- Conference papers
- Vapor bubble induced electric current generation
- Photochemistry of phthalocyanine based on spin angular momenta: a kinetic study of fluorescent probes for ascorbic acid
- Study of the influence of autoclave sterilization on the properties of citrate functionalized iron oxide nanoparticles
- What defines biomimetic and bioinspired science and engineering?
- Orthogonal chemistry in the design of rare-earth metal oxyhydrides
- Highly conjugated carbazole-based monomers for the control of nanotubular surface structures by soft template electropolymerization
- Exploring the pH-dependent kinetics, thermodynamics and photochemistry of a flavylium-based pseudorotaxane
- Comprehensive multidimensional study of the self-assembly properties of a three residue substituted β3 oligoamide
- Invited paper
- Gender gap in science in Africa: experience of African women in mathematics association