Abstract
Spectroscopic ellipsometry study on spin-coated non-toxic Ge25S75 thin films annealed at different temperatures were conducted. Multi sample analysis with two sets of samples spin-coated onto soda-lime glass and onto silicon wafers was utilized. Optical constants (refractive index n and extinction coefficient k) of these films were determined from ellipsometric data recorded over a wide spectral range (0.05–6 eV). Different parametrization of Ge25S75 complex dielectric permittivity which consists of a Tauc-Lorentz or Cody-Lorentz oscillator describing the short wavelength absorption edge, a Lorentz or Gauss oscillators describing phonon absorption or optically active absorption of alkyl ammonium germanium salts in the middle infrared part of spectra is discussed. Using a Mott-Davis model, the decrease in local disorder with increasing annealing temperature is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, a decrease in the centroid distance of the valence and conduction bands with increasing annealing temperature is shown and increase in intensity of the inter-band optical transition due to annealing temperature occurs. Intensity of absorption near 3000 cm−1 could be used as alternative method to evaluation of quality of prepared films.
Highlights
Influence of annealing temperature on properties of Ge25S75 thin films is studied.
Discussion of different models for evaluation of ellipsometric data.
Application of Wemple-DiDomenico and Mott-Davis model.
Introduction
Chalcogenide glasses are semiconductor optical materials with promising potential especially in infrared optics [1], [2], [3], [4]. Great effort has been invested into research of non-toxic chalcogenide glasses which could be mass produced by coating or printing techniques [5], [6]. Major disadvantage of these solution based deposition methods is the content of residual solvent molecules remaining in the thin film’s structure, which can be significantly decreased by proper post-deposition annealing [7]. In our previous study successful preparation of spin-coated non-toxic Ge25S75 chalcogenide thin films were demonstrated [8].
Properties of Ge-S systems prepared by thermal evaporation were studied in the past [9], [10] and the blue shift of the optical bandgap energy induced by annealing accompanied by an increase in both short- and medium range order is reported. Photo induced phenomena in these films were further studied e.g. by Munzar et al. [11] and Knotek et al. [12]. Structure and optical properties of amorphous GeSx films prepared by pulsed laser deposition were studied by Pan et al. [13].
Amorphous chalcogenides possess high refractive index (~2.5; 2.8; 3.0 for sulfides, selenides and tellurides, respectively) [4] and are transparent in wide spectral range (from wavelength around 400–600 nm to about up to 10, 15, 20 μm for majority of sulfides, selenides and tellurides, respectively) [4]. The range of transparency of these materials is limited by short wavelength absorption edge (SWAE) on the one side and by long wavelength absorption edge on the other side. In the literature e.g. [14], different models are used for description of SWAE. Commonly, Tauc-Lorentz oscillator (TL) [15], [16]
is used for parametrization of SWAE of amorphous materials. In this model, film is transparent below
Instead of Tauc-Lorentz, Cody-Lorentz oscillator (CL) [17] can be used.
CL parametrization is similar to the TL in that it defines the optical bandgap energy
As was mentioned earlier, major disadvantage of solution based deposition techniques is the residual amount of solvent remaining in the thin film’s structure. But its content can be significantly lowered by proper annealing [7], [18], [19]. Residual amount of solvent could be optically active (absorbs light) and can be modeled by Lorentz oscillator [20]. For the modeling purpose of these absorptions in amorphous materials, the Gauss oscillator [21], [22] is commonly used as well. This paper deepens the results published in our previous paper where spin-coated non-toxic thin films of Ge25S75 were prepared and studied for the first time [8].
In our work, results obtained by spectroscopic ellipsometry are in detail discussed to study the optical properties of spin-coated Ge25S75 annealed at various temperatures. Different models of amorphous Ge25S75 films are used and discussed with the utilization of multi sample analysis. The effects of annealing temperature on the complex dielectric functions are investigated over a broad spectral range from 0.05 to 6 eV. In the vicinity of the absorption edge (3.0<E<4.0 eV) a Mott-Davis model, in the semi-transparent spectrum (0.5<E<2.5 eV) a Wemple-DiDomenico single oscillator dispersion, and in the mid-infra-red (MIR) (0.05<E<0.5 eV) a Gauss or Lorentz oscillator model were employed as this analysis provide physical meaning of the extracted parameters.
Experimental details
The source bulk Ge25S75 chalcogenide glass was prepared by standard melt-quenching method. High purity (5N) elements were loaded into the quartz ampule in appropriate amounts and sealed under vacuum (~10−3 Pa). The glass synthesis was performed in rocking tube furnace at 950°C for 72 h. The ampule with melted glass was quenched in cold water.
Prepared bulk glass was grinded in agate bowel and dissolved in n-butylamine (BA) with concentration 0.075 g of glass powder per 1 mL of BA solvent. The thin films were deposited using spin-coating method (spin-coater Best Tools SC110) onto soda-lime glass substrates and onto silicon substrates with native SiO2 layer (with 2000 rpm for 120 s under argon atmosphere where substrate have temperature 21°C the same as ambient temperature) yielding thin films of good optical quality. Immediately after deposition the thin films were stabilized by annealing at 60°C for 20 min on a hot plate in ambient atmosphere (hereinafter referred as as-prepared thin film). Deposited samples were stored in dry and dark environment.
Samples of as-prepared thin films were annealed at temperatures 90°C (t90), 120°C (t120), 150°C (t150), 180°C (t180), 210°C (t210) and 240°C (t240)°C for 60 min on annealing table (Conbrio, Czech Republic) inside argon filled annealing chamber. The highest annealing temperature used in our study 240°C is sufficiently bellow glass-transition temperature reported to be 360°C [23] to rule out possible seeding of crystallites.
Two variable angle spectroscopic ellipsometers (VASE and IR-VASE J. A. Woollam Co.) were used for the optical characterization of the prepared samples. The first ellipsometer was equipped with an automatic rotating analyzer over the spectral range 210 nm–1700 nm (UV-VIS-NIR), measuring 30 revolutions with photon energy steps of 0.05 eV at three selected angles of incidence (AOI) (50°, 60° and 70°). The second ellipsometer was equipped with a rotating compensator for 1.7–22 μm (NIR-MIR), using same AOI, measuring 25 scans, 15 spectra per revolution with wavenumber steps 8 cm−1. Near normal incidence optical reflectance was measured by the same instruments. Optical spectrometer (Shimadzu UV3600) was used for transmission spectra measurements in the spectral region 190–2000 nm. WVASE32 software was used for evaluation the measured data.
Results and discussion
Structure model and material optical constants
Two sets of samples were prepared by the same spin-coating procedure on different substrates. As shown in Fig. 1 (left column), a sample model used to analyze the raw ellipsometry data consists of i) a semi-infinite glass substrate, ii) a homogenous, isotropic layer representing the Ge25S75 film, iii) surface roughness and iv) air as the ambient medium. Analogously in Fig. 1 (right column), a sample model consists of i) a crystalline silicon substrate, ii) a SiO2 layer, iii) a homogenous, isotropic layer representing the Ge25S75 film, iv) surface roughness and v) air as the ambient medium.

Sketch of the optical models used to fit the ellipsometry data.
For ellipsometry and reflectivity measurements of samples on glass substrates, their backside was roughened to avoid unwanted backside reflection. Optical constants of the glass substrate were obtained by measurement of an uncoated glass substrate. In case of Si substrate backside reflection was treated in the WVASE32 software numerically. Possible thickness nonuniformity was modeled in the WVASE32 software as well.
Optical constants of Si and SiO2 in the NIR – VIS – UV range were taken from the literature [24]. Optical constants of Si and SiO2 layer in the MIR part of spectra was obtained by measurement of an uncoated SiO2/Si substrate.
In this work, different model dielectric function, TL or CL model describing SWAE and sum of Lorentz or Gauss oscillators representing absorption in middle infrared part of spectra will be used and compared. Therefore model dielectric function used for the Ge25S75 films consists of several contributions:
Surface roughness is modeled by a Bruggeman type effective medium approximation [25] with 50% of voids and 50% of Ge25S75. With the aim to improve reliability of obtained results, multi sample analysis has been employed with simultaneous use of samples spin-coated onto glass substrate and onto silicon substrate in the fitting procedure.
Figure of merit and quality of the fit
The change of the polarization state is usually expressed by two parameters, amplitude ratio ψ and phase shift Δ, that are defined using the Fresnel reflection coefficients for p- and s- polarized light:
Spectroscopic ellipsometry is an indirect optical characterization method, where the measured values ψexp and Δexp are compared to the values calculated from the model. In the model structure, the model dielectric function which define optical constants of the layers and their thicknesses are assumed, and corresponding values of ψmod and Δmod belonging to the proposed model structure are calculated. In this way, the optical parameters of studied layers, such as complex refractive index (which includes refractive index as the real part and extinction coefficient as the imaginary part) together with geometrical properties (such as thickness of the layer and surface roughness) can be calculated.
In our case, the measured spectroscopic ellipsometry parameters, ψexp and Δexp fitted against the designed model in the spectral range from 0.05 eV to 6 eV using the mean square error (MSE) given in the following expression:
where N is the number of measured pairs of ellipsometric parameters ψexp and Δexp and M represents the total number of fitted parameters.
Figure 2 shows the comparison of ellipsometry parameters, ψ (circles) and Δ (triangles) for an AOI of 70° in the spectral range from 0.05 to 0.8 eV (MIR part of spectrum) for Ge25S75 as-prepared onto Si substrate (left column) and for Ge25S75 as-prepared onto glass substrate (right column).

Measured values of ψ (circles) and Δ (triangles) for as-prepared Ge25S75 sample in the MIR part of the spectrum for sample deposited onto Si substrate (left column) and for sample deposited onto glass substrate (right column). The best fit for the angle of incidence 70° is shown by solid lines.
Based on proposed model described in details later, transmission and reflectivity could be calculated and used in the fit as well. Sufficient fit quality of the transmission and reflectivity data can be seen at Fig. 3. Incorporation of the transmission data into the fit improve reliability of calculated optical constants especially in the region close to the bandgap.

Measured values of transmission (symbols, left column) and reflectivity (symbols, right column) for t90 sample in the NIR-VIS-UV part of the spectra for sample deposited onto glass substrate. The best fit is shown by solid lines.
Film thickness and surface roughness
Measurement of the uncoated SiO2/Si substrate revealed a native SiO2 layer thickness of 2 nm. Measured thicknesses of Ge25S75 films are summarized in Table 1.
Thickness, surface roughness and thickness nonuniformity of Ge25S75 films spin-coated onto soda-lime glass and Si substrates obtained by the best fit of ellipsometry data using Tauc-Lorentz parametrization.
| Sample | Thickness of samples (on glass substrate) (nm) | Thickness of samples (on Si substrate) (nm) | Surface roughness (on glass substrate) (nm) | Surface roughness (on Si substrate) (nm) | Thickness nonuniformity (%) |
|---|---|---|---|---|---|
| as-prepared | 396.0±0.2 | 444.0±0.2 | 0.3±0.1 | 2±2 | 5.0±0.5 |
| t-90°C | 378.9±0.2 | 436.2±0.2 | 0.9±0.1 | 0±2 | 9.1±0.5 |
| t-120°C | 345.2±0.2 | 367.8±0.2 | 2.3±0.1 | 1.2±0.7 | 8.3±0.3 |
| t-150°C | 260.1±0.2 | 306.0±0.2 | 5.5±0.1 | 6±1 | 6.4±0.4 |
| t-180°C | 220.0±0.2 | 223.9±0.2 | 5.1±0.1 | 7±2 | 3.8±0.4 |
| t-210°C | 197.5±0.2 | 197.5±0.2 | 11.2±0.1 | 12.5±0.3 | 3.2±0.4 |
| t-240°C | 189.3±0.2 | 183.1±0.2 | 12.8±0.1 | 13±1 | 4.0±0.5 |
Although thickness of the films deposited onto glass substrate and onto Si substrate slightly differs, its dependence on annealing temperature is similar. The similar huge thickness decrease (approximately to the half) caused by annealing temperature as in the studied case has been reported previously for As2S3 spin-coated layers [26] and was explained by releasing of organic residues and by the glass densification.
In our previous paper [8] good agreement between surface roughnesses determined by spectroscopic ellipsometry on the samples prepared on soda-lime glass substrate and surface roughnesses determined by AFM was shown. Moreover AFM scans do not reveal any signs of seeding of crystallites. As can be seen from Table 1 surface roughness is only slightly dependent on the used substrate. Increase of surface roughness with the annealing temperature observed on both used substrates is connected with releasing of alkyl ammonium germanium salts residue from the films together with decreasing of film thickness.
Thicknesses of the films obtained by CL model are nearly the same within experimental error less than 1%. The values of thickness nonuniformity obtained by the fit of measured depolarization parameter are presented in the Table 1 and reflect possible wedging of the film.
It is worth to mention that stoichiometry of the samples is slightly changing. The gradual decrease of the sulfur content with increasing annealing temperature has been observed (see Fig. 7 at Ref. [8]). The composition after annealing at 240°C obtained by EDS measurement is Ge29,1S70,9.
Refractive index and extinction coefficients of Ge25S75 in wide spectral range
Figure 4 shows determined wide spectral range dispersion of the refractive index, n, and extinction coefficient, k, of Ge25S75 films annealed on different temperature. In the NIR-VIS-UV region (0.5<E<6.0 eV) all samples show a broad profile of refractive index with a peak moving towards lower photon energies (red shift) with the increasing annealing temperature. The refractive index is increasing with the annealing temperature suggesting densification of glass structure at elevated annealing temperatures. It is probable that as-prepared samples exhibits residual tensile stress and with the increasing annealing temperature stress relaxation takes place influencing refractive index as well. Although existence of the nano pores in the spin-coated Ge23Sb7S70 thin films [27] and in ion sputtered TaO5 coatings [28] were reported in the literature there is no direct evidence of nano pores in studied films.
![Fig. 4:
Determined Ge25S75 refractive index n (left column), and extinction coefficient k (right column), as a function of photon energy in the wide spectral range. Indication of spectral ranges where different models [Mott-Davis, Wemple-DiDomenico (WDD)] are used (left), indicate the different oscillators used (right).](/document/doi/10.1515/pac-2016-1019/asset/graphic/j_pac-2016-1019_fig_018.jpg)
Determined Ge25S75 refractive index n (left column), and extinction coefficient k (right column), as a function of photon energy in the wide spectral range. Indication of spectral ranges where different models [Mott-Davis, Wemple-DiDomenico (WDD)] are used (left), indicate the different oscillators used (right).
In the NIR-VIS-UV region, SWAE is present. The onset of SWAE is moving toward lower photon energies consistently with described shift of refractive index peak with the exception of t240 sample. Relationship between real (refractive index n) and imaginary (extinction coefficient k) part of complex refractive index is described by Kramers–Kronig relations [29], [30]. The extinction coefficient of all samples is ~0 in the visible spectrum.
In the MIR region (0.05<E<0.5 eV), optical active absorptions either from alkyl ammonium germanium salts residues or from absorption of photons by phonons are present.
In the following sections the wide spectral range of Ge25S75 refractive index and extinction coefficient will be divided into three parts (as shown in Fig. 4) where different models (Mott-Davis, Wemple-DiDomenico) will be applied to get more physical insight.
Effect of annealing temperature on the refractive index dispersion data
The effect of annealing temperature on the refractive index dispersion data in the semi-transparent part of spectra below the bandgap (0.5<E<2.5 eV) is further investigated using a Wemple-DiDomenico model [31], [32]. The refractive index data can be fitted in this spectral range to the single oscillator expression
where E is the photon energy, E0 is the energy of the effective dispersion oscillator and Ed is the dispersion energy. From linear regression of dependence (n2−1)−1 against E2 (as shown in Fig. 5), the parameters Ed and E0 could be calculated.

Dependence of 1/(n2−1) as a function of square photon energy obtained from ellipsometry (symbols) and linear fit of this data (solid lines) according to Wemple-DiDomenico model.
The parameter Ed, which is a measure of the intensity of the inter-band optical transition, is related to other physical parameters of the material through the following empirical relationship [31], [32],
where Nc is the effective coordination number of the cation nearest-neighbor to the anion, Za is the formal chemical valence of the anion, Ne is the effective number of valence electrons per anion and β is a two valued constant with either an ionic or covalent value (βionic=0.26±0.03 eV and βcovalent=0.37±0.04 eV).
Figure 6 shows the variation of Ed and E0 as a function of annealing temperature of the Ge25S75 films. Ed is ~14 eV for annealing temperatures below 120°C and ~17 eV for higher annealing temperatures. In spite of eq. 7, increase of Ed could be explained both by increase of β and by increase of Ne. These findings supports results obtained from Raman measurements [8] and could be explained by alkyl ammonium germanium salt releasing from the structure and thermo-induced polymerization connected with changes of local arrangement. Annealing temperature about 150°C is sufficient for the majority of these changes.

Wemple-DiDomenico parameters Ed and E0 as a function of annealing temperature.
E
0 is ~7.3 eV for as-prepared film and is decreasing with annealing temperature. Parameter E0 is associated with distance of centroids of valence and conduction band and therefore with optical bandgap
Effect of annealing temperature on the optical bandgap
According to the Mott and Davis [36], [37] and Tauc [38] models, the width of the localized states near the mobility edges depends on the degrees of disorder and defects present in the amorphous structure, in particular, differences in coordination number in amorphous state with respect to crystalline state [39], [40].
For photon energies (2.0 eV<E<6.0 eV) SWAE is observed. As mentioned previously, Tauc-Lorentz oscillator or Cody-Lorentz oscillators are used to model the band edge region.
For majority of amorphous semiconductors, the optical absorption in the vicinity of the SWAE obeys the Tauc relationship [38]:
where
In order to obtain parameters from previous equation, dependence in the form of (αE)1/2 as a function of photon energy E is depicted at Fig. 7 (left) for Tauc-Lorentz oscillator and at Fig. 7 (right) for Cody-Lorentz oscillator. The Tauc model (eq. 8) is used to describe its linear part (left, lines). Parameter B can be calculated as

(αE)1/2 as a function of photon energy (symbols, left column) obtained using Tauc-Lorentz oscillator and its linear part described by Tauc model (solid lines, left column). (αE)1/2 as a function of photon energy obtained using Cody-Lorentz oscillator (symbols, right column).
Influence of the annealing temperature leads to the considerable changes in the sample disorder (the change of parameter B1/2). The width of localized states can be compared with as-prepared sample for all measured samples as (ΔEtx/ΔEas-prepared)=(Bas-prepared/Btx)/(ntx/nas-prepared). Table 2 summarizes the change of the slope of SWAE, values of the refractive index for 3.0 eV used for calculation of ΔE ratio together with the results of this calculation.
B 1/2=Slope of linear part of the (αE)1/2 dependence as a function of photon energy E obtained using Tauc-Lorentz oscillator, n (3.0 eV)=refractive index for 3.0 eV, and comparison of the width of localized states to as-prepared sample.
| Sample | B 1/2 (TL) (cm−1/2·eV−1/2) | n (3.0 eV) | ΔEtx/ΔEas-prepared |
|---|---|---|---|
| as-prepared | 452±2 | 1.85±0.01 | – |
| t-90°C | 480±2 | 1.84±0.01 | 0.89±0.01 |
| t-120°C | 446±2 | 1.84±0.01 | 1.03±0.01 |
| t-150°C | 502±1 | 1.95±0.01 | 0.77±0.01 |
| t-180°C | 586±1 | 2.06±0.01 | 0.53±0.01 |
| t-210°C | 640±1 | 2.14±0.01 | 0.43±0.01 |
| t-240°C | 745±1 | 2.18±0.01 | 0.31±0.01 |
From these results (Table 2), shrinking of the width of localized states due to annealing temperature can be observed. Annealing temperature 240°C decrease disorder in the material approximately to 1/3 in comparison with as-prepared sample.
The comparison of TL and CL oscillator is depicted at Fig. 7 (left column Tauc-Lorentz, right column Cody-Lorentz oscillator). The main difference is that CL parametrization allows optical transitions in the bandgap (tail states) and dependence of (αE)1/2 as a function of photon energy is not linear above the bandgap. Generally the results obtained by CL model are very close to that obtained by TL model. For comprehensive discussion of these two oscillators parameters of TL model together with MSE are summarized in the Table 3, parameters of CL model together with MSE in the Table 4.
Parameters of TL model together with obtained MSE for all studied samples.
| Sample | A TL (eV) | C TL (eV) |
|
|
MSETL |
|---|---|---|---|---|---|
| as-prepared | 83±1 | 6.8±0.1 | 7.24±0.03 | 3.45±0.01 | 1.6 |
| t-90°C | 77±1 | 6.9±0.1 | 7.33±0.03 | 3.34±0.01 | 1.6 |
| t-120°C | 78±2 | 9.2±0.3 | 7.86±0.05 | 3.18±0.01 | 1.5 |
| t-150°C | 98±13 | 11±2 | 6.4±0.4 | 3.06±0.02 | 1.5 |
| t-180°C | 152±2 | 11.3±2 | 5.63±0.05 | 3.04±0.01 | 1.4 |
| t-210°C | 156±7 | 8.9±0.2 | 5.3±0.2 | 3.03±0.01 | 1.8 |
| t-240°C | 152±7 | 5.9±0.2 | 5.0±0.1 | 3.13±0.01 | 2.2 |
Parameters of CL model together with obtained MSE for all studied samples (superscript fixed means fixed parameter).
| Sample | A CL (eV) |
|
ΓCL (eV) |
|
|
|
|
MSECL |
|---|---|---|---|---|---|---|---|---|
| as-prepared | 10±2 | 7.1±0.3 | 3.3±0.6 | 4.0±0.2 | 0.4±0.2 | 0.4fixed | 0.28± 0.01 | 2.6 |
| t-90°C | 10±3 | 7.0±0.4 | 3±1 | 4.0±0.3 | 0.4±0.4 | 0.4fixed | 0.30±0.01 | 3.9 |
| t-120°C | 10±3 | 7.4±0.5 | 3.3±0.7 | 3.8±0.2 | 0.3±0.2 | 0.4fixed | 0.28±0.01 | 4.3 |
| t-150°C | 24.4±0.4 | 9.0±0.1 | 4.7±0.3 | 3.50±0.03 | 0.29±0.03 | 0.3±0.5 | 0.21±0.01 | 2.2 |
| t-180°C | 31±1 | 8.8±0.2 | 7.1±0.5 | 3.20±0.02 | 0.66±0.05 | 0.3±0.7 | 0.18±0.01 | 2.8 |
| t-210°C | 46±3 | 7.8±0.1 | 11±2 | 3.04±0.01 | 1.43±0.07 | 0.21±0.01 | 0.62±0.02 | 2.0 |
| t-240°C | 75±10 | 5.2±0.3 | 11fixed | 3.08±0.01 | 2.6±0.3 | 0.29±0.01 | 0.52±0.02 | 2.6 |
As can be seen from Table 4, CL model exhibits serious difficulties when use for the fitting of SWAE of studied samples. For example parameter Et describing optical transitions in the bandgap has to be fixed or has significant error in the case of nearly all studied samples. Taking into account that CL parametrization have seven free parameters and TL only four free parameters and that the MSE for CL model is generally higher than for TL model it is more accurate to use Tauc-Lorentz oscillator for the studied samples.
Among all presented parameters usually value of parameter
Consistently both parameters
Effect of annealing temperature in the MIR part of spectra
As was mentioned earlier, in the MIR part of spectra, optically active absorptions of alkyl ammonium germanium salts and absorptions of photons by phonons are present. Usually Lorentz oscillators are used for this type absorption. In case of amorphous materials, gauss oscillator can be used instead. The refractive index comparison of both oscillators used for the sample annealed at the lowest (as-prepared) and the highest (t240) temperature is depicted at Fig. 8. Usage of both oscillators leads to very similar results. For amorphous samples, use of gauss oscillator is usually preferred allowing to model broader absorption peak (Gaussian widening of the Lorentz oscillators).

Comparison of refractive index in MIR part of spectra calculated by Gauss and Lorentz oscillators.
Refractive index, respectively extinction coefficient of all studied films obtained using Gauss oscillators are depicted in the Fig. 9.

Determined Ge25S75 refractive index n (left column), and extinction coefficient k (right column), as a function of photon energy in MIR part of spectra.
From the results of Raman measurement described in our previous paper [8] some of these absorptions (especially that close to 3000 cm−1) can be associated with alkyl ammonium germanium sulfide salts molecules. As we shown [8] intensity of this particular absorption matches well with results of EDS analysis and therefore infrared ellipsometry could be used as alternative method for determine of quality of annealed spin-coated films. Described intensity of absorption peak close to 3000 cm−1 is still not negligible even for the highest annealing temperature used (240°C) suggesting that n-butylamine is difficult to be removed completely from the spin-coated films as was similarly reported in the literature in the case of spin-coated films using propylamine [35], [41], [42]. Presence of n-butylamine in the annealed films could be alternatively observed from comparison with the data reported for the bulk Ge25S75 [43] where n (632.8 nm)=2.132 and Eg=2.47 eV. From our measurements even for annealing temperature 240°C: n (632.8 nm)=1.993 (see Fig. 4) and Eg=3.13 eV (see Table 3) both still far from the bulk data.
Conclusions
Spectroscopic ellipsometry study was conducted on the non-toxic spin-coated amorphous Ge25S75 films annealed at different temperatures. The refractive index and extinction coefficient of those films over the broad spectral range of the MIR-VIS-UV region (0.05<E<6.0 eV) were obtained by the best fit of ellipsometry data. Different model dielectric functions including Tauc-Lorentz oscillator or Cody-Lorentz oscillator for description of short wavelength absorption edge, and Lorentz or Gauss oscillators for description of phonon absorptions and optically active absorptions in MIR part of spectra were used and discussed.
Using a Mott-Davis model in the vicinity of the absorption edge (3.0<E<4.0 eV), the width of the localized states is decreasing indicating the decrease of local disorder with annealing temperature. Using Wemple-DiDomenico single oscillator dispersion in the semi-transparent spectrum (0.5<E<2.5 eV), the intensity of interband optical transition, Ed, shows an increase ~3 eV from as-prepared sample to the sample annealed at the highest temperature probably due to change of local arrangement around Ge cation connected with releasing of alkyl ammonium germanium salts residue from the film and thermo-induced polymerization. The energy of the effective dispersion oscillator (E0) decreases with increasing annealing temperature indicating contraction of centroids of the valence and conduction bands. Some absorption in the MIR part of spectra especially that close to 3000 cm−1 could be associated to alkyl ammonium germanium salts in the spin-coated film. Decrease of its intensity correspond to results from EDS [8] and can be taken as alternative method to evaluation of spin-coated film quality.
In this article, the possibilities of spectroscopic ellipsometry in solid state chemistry especially for amorphous chalcogenides had been discussed. Comparison of different models for ellipsometry data evaluation reveal that although Cody-Lorentz model is closer to the expected results from electronic structure, Tauc-Lorentz model describe short wavelength edge with lower number of free parameters and moreover with lower mean square error. In the MIR part of spectra results obtained using Lorentz or Gauss oscillators are practically identical.
Article note
A collection of invited papers based on presentations at the 12th Conference on Solid State Chemistry (SSC-2016), Prague, Czech Republic, 18–23 September 2016.
Acknowledgements
Authors appreciate financial support from project No. 16-13876S financed by the Grant Agency of the Czech Republic (GA CR) as well as support from the grants LM2015082 and CZ.1.05/4.1.00/11.0251 from the Ministry of Education, Youth and Sports of the Czech Republic.
References
[1] A. Stronski, M. Vlcek, A. Sklenar. Quant. Electron. Optoelectron3, 394 (2000).10.15407/spqeo3.03.394Suche in Google Scholar
[2] A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Hô, R. Vallee. Opt. Lett.29, 748 (2004).10.1364/OL.29.000748Suche in Google Scholar
[3] S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachl, C. B. Arnold. Appl. Phys. Lett.89, 041115 (2006).10.1063/1.2236296Suche in Google Scholar
[4] K. Tanaka, K. Shimakawa. Amorphous Chalcogenide Semiconductors and Related Materials. Springer, New York (2011).10.1007/978-1-4419-9510-0Suche in Google Scholar
[5] K. Palka, T. Syrovy, S. Schröter, S. Brückner, M. Rothhardt, M. Vlcek. Opt. Mater. Express4, 384 (2014).10.1364/OME.4.000384Suche in Google Scholar
[6] S. Novak, D. E. Johnston, Ch. Li, W. Deng, K. Richardson. Thin Solid Films588, 56 (2015).10.1016/j.tsf.2015.04.049Suche in Google Scholar
[7] S. Slang, K. Palka, L. Loghina, A. Kovalskiy, H. Jain, M. Vlcek. J. Non-Cryst. Solids426, 125 (2015).10.1016/j.jnoncrysol.2015.07.009Suche in Google Scholar
[8] S. Slang, P. Janicek, K. Palka, M. Vlcek. Opt. Mater. Express6, 1973 (2016).10.1364/OME.6.001973Suche in Google Scholar
[9] L. Tichy, H. Ticha, K. Handlir, K. Jurek. J. Non-Cryst. Solids101, 223 (1988).10.1016/0022-3093(88)90157-3Suche in Google Scholar
[10] A. Vidourek, L. Tichy, M. Vlcek. Mater. Lett.32, 241 (1997).10.1016/S0167-577X(97)00035-9Suche in Google Scholar
[11] M. Munzar, L. Tichy, H. Ticha. Curr. Appl. Phys.2, 181 (2002).10.1016/S1567-1739(01)00108-0Suche in Google Scholar
[12] P. Knotek, L. Tichy, D. Arsova, Z. G. Ivanova, H. Ticha. Mater. Chem. Phys.119, 315 (2010).10.1016/j.matchemphys.2009.09.003Suche in Google Scholar
[13] R. K. Pan, H. Z. Tao, H. C. Zang, C. G. Lin, T. J. Zhang, X. J. Zhao. J. Non-Cryst. Solids357, 2358 (2011).10.1016/j.jnoncrysol.2010.11.055Suche in Google Scholar
[14] I. Ohlidal, D. Franta, M. Siler, F. Vizda, M. Frumar, J. Jedelsky, J. Omasta. J. Non-Cryst. Solids352, 5633 (2006).10.1016/j.jnoncrysol.2006.08.046Suche in Google Scholar
[15] G. E. Jellison, Jr. F. A. Modine. Appl. Phys. Lett.69, 371 (1996).10.1063/1.118064Suche in Google Scholar
[16] G. E. Jellison, Jr. F. A. Modine. Appl. Phys. Lett.69, 2137 (1996).10.1063/1.118155Suche in Google Scholar
[17] A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Wronski, X. Deng, G. Ganguly. J. Appl. Phys.92, 2424 (2002).10.1063/1.1497462Suche in Google Scholar
[18] G. C. Chern, I. Lauks. J. Appl. Phys.53, 6979 (1982).10.1063/1.330043Suche in Google Scholar
[19] G. C. Chern, I. Lauks, A. R. McGhie. J. Appl. Phys.54, 4596 (1983).10.1063/1.332614Suche in Google Scholar
[20] F. Wooten. Optical Properties of Solids. Academic Press, New York (1972).Suche in Google Scholar
[21] D. De Sousa Meneses, M. Malki, P. Echegut. J. Non-Cryst. Solids351, 769 (2006).10.1016/j.jnoncrysol.2006.02.004Suche in Google Scholar
[22] K. -E. Peiponen, E. M. Vartiainen. Phys. Rev. B44, 8301 (1991).10.1103/PhysRevB.44.8301Suche in Google Scholar
[23] T. Kohoutek, J. Orava, J. Prikryl, T. Wagner, M. Frumar. J. Non-Cryst. Solids357, 157 (2011).10.1016/j.jnoncrysol.2010.10.028Suche in Google Scholar
[24] C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson. J. Appl. Phys.83, 3323 (1998).10.1063/1.367101Suche in Google Scholar
[25] D. A. G. Bruggeman. Ann. Phys. (Leipzig)24, 636 (1935).10.1002/andp.19354160705Suche in Google Scholar
[26] Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, J. Hu. Opt. Mater. Express2, 1723 (2012).10.1364/OME.2.001723Suche in Google Scholar
[27] M. Waldmann, J. D. Musgraves, K. Richardson, C. B. Arnold. J. Mater. Chem.22, 17848 (2012).10.1039/c2jm32235hSuche in Google Scholar
[28] L. Anghinolfi, M. Prato, A. Chtanov, M. Gross, A. Chincarini, M. Neri, G. Gemme, M. Canepa. J. Phys. D: Appl. Phys.46, 455301 (2013).10.1088/0022-3727/46/45/455301Suche in Google Scholar
[29] R. de L. Kronig. J. Opt. Soc. Am.12, 547 (1926).10.1364/JOSA.12.000547Suche in Google Scholar
[30] H. A. Kramers. Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como.2, 545 (1927).Suche in Google Scholar
[31] S. H. Wemple. Phys. Rev. B7, 3767 (1973).10.1103/PhysRevB.7.3767Suche in Google Scholar
[32] S. H. Wemple, M. DiDomenico. Phys. Rev. B3, 1338 (1971).10.1103/PhysRevB.3.1338Suche in Google Scholar
[33] K. Tanaka. Thin Solid Films66, 271 (1980).10.1016/0040-6090(80)90381-8Suche in Google Scholar
[34] H. Ticha, L. Tichy. J. Optoelectron. Adv. Mater.4, 381 (2002).Suche in Google Scholar
[35] S. Song, J. Dua, C. B. Arnold. Opt. Express18, 5472 (2010).10.1364/OE.18.005472Suche in Google Scholar PubMed
[36] N. F. Mott, E. A. Davis. Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1979).Suche in Google Scholar
[37] E. A. Davis, N. F. Mott. Phil. Mag.22, 0903 (1970).10.1080/14786437008221061Suche in Google Scholar
[38] J. Tauc. in Amorphous and liquid semiconductors, J. Tauc (Ed.), Plenum Press, New York (1974).10.1007/978-1-4615-8705-7Suche in Google Scholar
[39] S. R. Ovshinsky, D. Adler. Contemp. Phys.19, 109 (2006).10.1080/00107517808210876Suche in Google Scholar
[40] M. L. Theye. in Proceeding of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch- Partenkirchen (1973).Suche in Google Scholar
[41] T. Kohoutek, J. Orava, L. Strizik, T. Wagner, A. L. Greer, M. Bardosova, H. Fudouzi. Opt. Mater.36, 390 (2013).10.1016/j.optmat.2013.09.026Suche in Google Scholar
[42] Y. Zha, M. Waldmann, C. B. Arnold. Opt. Mater. Express3, 1259 (2013).10.1364/OME.3.001259Suche in Google Scholar
[43] J. P. Bérubé, S. H. Messaddeq, M. Bernier, I. Skripachev, Y. Messaddeq, R. Vallée. Opt. Express22, 26103 (2014).10.1364/OE.22.026103Suche in Google Scholar PubMed
©2017 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- Graphical abstracts
- In this issue
- Preface
- 12th Conference on Solid State Chemistry (SSC-2016)
- Conference papers
- Structural modifications of metallic glasses followed by techniques of nuclear resonances
- Highly conductive barium iron vanadate glass containing different metal oxides
- Physico-chemical and optical properties of Er3+-doped and Er3+/Yb3+-co-doped Ge25Ga9.5Sb0.5S65 chalcogenide glass
- Spectroscopic ellipsometry characterization of spin-coated Ge25S75 chalcogenide thin films
- The challenge of methods of thermal analysis in solid state and materials chemistry
- Mössbauer spectroscopy: epoch-making biological and chemical applications
- Redistribution of iron ions in porous ferrisilicates during redox treatments
- Textural and morphology changes of mesoporous SBA-15 silica due to introduction of guest phase
- Carbon dioxide and methane adsorption over metal modified mesoporous SBA-15 silica
- Titania aerogels with tailored nano and microstructure: comparison of lyophilization and supercritical drying
- Solvent-free, improved synthesis of pure bixbyite phase of iron and manganese mixed oxides as low-cost, potential oxygen carrier for chemical looping with oxygen uncoupling
- Synthesis, structure and thermal expansion of the phosphates M0.5+x M′x Zr2−x (PO4)3 (M, M′–metals in oxidation state +2)
- Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite
- Structure and properties of nanocrystalline nickel prepared by selective leaching at different temperatures
- Corrosion protection of zirconium surface based on Heusler alloy
- Toward the control of graphenic foams
Artikel in diesem Heft
- Frontmatter
- Graphical abstracts
- In this issue
- Preface
- 12th Conference on Solid State Chemistry (SSC-2016)
- Conference papers
- Structural modifications of metallic glasses followed by techniques of nuclear resonances
- Highly conductive barium iron vanadate glass containing different metal oxides
- Physico-chemical and optical properties of Er3+-doped and Er3+/Yb3+-co-doped Ge25Ga9.5Sb0.5S65 chalcogenide glass
- Spectroscopic ellipsometry characterization of spin-coated Ge25S75 chalcogenide thin films
- The challenge of methods of thermal analysis in solid state and materials chemistry
- Mössbauer spectroscopy: epoch-making biological and chemical applications
- Redistribution of iron ions in porous ferrisilicates during redox treatments
- Textural and morphology changes of mesoporous SBA-15 silica due to introduction of guest phase
- Carbon dioxide and methane adsorption over metal modified mesoporous SBA-15 silica
- Titania aerogels with tailored nano and microstructure: comparison of lyophilization and supercritical drying
- Solvent-free, improved synthesis of pure bixbyite phase of iron and manganese mixed oxides as low-cost, potential oxygen carrier for chemical looping with oxygen uncoupling
- Synthesis, structure and thermal expansion of the phosphates M0.5+x M′x Zr2−x (PO4)3 (M, M′–metals in oxidation state +2)
- Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite
- Structure and properties of nanocrystalline nickel prepared by selective leaching at different temperatures
- Corrosion protection of zirconium surface based on Heusler alloy
- Toward the control of graphenic foams