A review of the fractionation and properties of lignin derived from pulping black liquor and lignocellulose pretreatment
Abstract
The pulp and paper industry generates large quantities of Pulping Black Liquor (BL). Minimizing the chemical content in BL through effective and environmentally friendly treatment methods is therefore essential. BL contains a substantial amount of highly heterogeneous lignin, which has a complex chemical structure and a broad molecular weight distribution. Only a small fraction of this lignin is used as a dispersant, concrete additive, or binder in mining operations, while the majority is used as a fuel source. Solvent fractionation of this inhomogeneous lignin with solvents offers a promising solution to overcome these limitations. The fractionated lignin has a more controlled molecular weight and a more uniform structure, facilitating its high-value applications and reducing the environmental impact of BL. This paper reviews the conversion of lignin in BL, various methods for lignin separation, and recent advances in the use of commonly used solvents such as methanol, ethanol, acetone, dichloromethane, ethyl acetate, and ionic liquids for lignin fractionation. A novel and effective solvent-based approach for lignin fractionation from BL is proposed.
Funding source: Science, Education and Industry Integration Pilot Project Major Innovative Projects of Qilu University of Technology, Shandong Academy of Sciences
Award Identifier / Grant number: No. 2024ZDZX03
Funding source: National Key Research and Development Program of China
Award Identifier / Grant number: 2021YFB3201200
Award Identifier / Grant number: 2021YFB3201205
-
Research ethics: Not applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.
-
Author contributions: The authors has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Improve language.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This research was financially supported by the Science, Education and Industry Integration Pilot Project Major Innovative Projects of Qilu University of Technology, Shandong Academy of Sciences (No. 2024ZDZX03) and National Key Research and Development Program of China (2021YFB3201200, 2021YFB3201205).
-
Data availability: Not applicable.
References
Akbari, M., Oyedun, A.O., Jain, S., and Kumar, A. (2018). Options for the conversion of pulp and paper mill by-products in Western Canada. Sustain. Energy Technol. Assess. 26: 83–92, https://doi.org/10.1016/j.seta.2017.10.003.Suche in Google Scholar
Allegretti, C., Fontanay, S., Krauke, Y., Luebbert, M., Strini, A., Troquet, J., Turri, S., Griffini, G., and D’Arrigo, P. (2018). Fractionation of soda pulp lignin in aqueous solvent through membrane-assisted ultrafiltration. ACS Sustain. Chem. Eng. 6: 9056–9064, https://doi.org/10.1021/acssuschemeng.8b01410.Suche in Google Scholar
Aminzadeh, S., Lauberts, M., Dobele, G., Ponomarenko, J., Mattsson, T., Lindström, M.E., and Sevastyanova, O. (2018). Membrane filtration of kraft lignin: structural characteristics and antioxidant activity of the low-molecular-weight fraction. Ind. Crops Prod. 112: 200–209, https://doi.org/10.1016/j.indcrop.2017.11.042.Suche in Google Scholar
An, X., Cheng, Y., Zang, H., and Li, C. (2023). Biodegradation characteristics of lignin in pulping wastewater by the thermophilic Serratia sp. AXJ-M: performance, genetic background, metabolic pathway and toxicity assessment. Environ. Pollut. 322: 121230, https://doi.org/10.1016/j.envpol.2023.121230.Suche in Google Scholar PubMed
An, L., Si, C., Wang, G., Sui, W., and Tao, Z. (2019). Enhancing the solubility and antioxidant activity of high-molecular-weight lignin by moderate depolymerization via in situ ethanol/acid catalysis. Ind. Crops Prod. 128: 177–185, https://doi.org/10.1016/j.indcrop.2018.11.009.Suche in Google Scholar
Arkell, A., Olsson, J., and Wallberg, O. (2014). Process performance in lignin separation from softwood black liquor by membrane filtration. Chem. Eng. Res. Des. 92: 1792–1800, https://doi.org/10.1016/j.cherd.2013.12.018.Suche in Google Scholar
Arshanitsa, A., Krumina, L., Telysheva, G., and Dizhbite, T. (2016). Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis. Ind. Crops Prod. 92: 1–12, https://doi.org/10.1016/j.indcrop.2016.07.050.Suche in Google Scholar
Beisl, S., Miltner, A., and Friedl, A. (2017). Lignin from micro- to nanosize: production methods. Int. J. Mol. Sci. 18: 1244, https://doi.org/10.3390/ijms18061244.Suche in Google Scholar PubMed PubMed Central
Bertaud, F., Ottenio, P., Aubigny, A., and Dufour, A. (2023). Recovering lignin in a real-case industrial kraft pulp mill: pilot-scale experiment and impact on the mill commodities. ACS Sustain. Chem. Eng. 11: 6311–6318, https://doi.org/10.1021/acssuschemeng.2c07678.Suche in Google Scholar
Boeriu, C.G., Fiţigău, F.I., Gosselink, R.J.A., Frissen, A.E., Stoutjesdijk, J., and Peter, F. (2014). Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind. Crops Prod. 62: 481–490, https://doi.org/10.1016/j.indcrop.2014.09.019.Suche in Google Scholar
Bonawitz, N.D., Kim, J.I., Tobimatsu, Y., Ciesielski, P.N., Anderson, N.A., Ximenes, E., Maeda, J., Ralph, J., Donohoe, B.S., Ladisch, M., et al.. (2014). Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509: 376–380, https://doi.org/10.1038/nature13084.Suche in Google Scholar PubMed
Cederholm, L., Xu, Y., Tagami, A., Sevastyanova, O., Odelius, K., and Hakkarainen, M. (2020). Microwave processing of lignin in green solvents: a high-yield process to narrow-dispersity oligomers. Ind. Crops Prod. 145: 112152, https://doi.org/10.1016/j.indcrop.2020.112152.Suche in Google Scholar
Chambon, C.L., Fitriyanti, V., Verdía, P., Yang, S.M., Hérou, S., Titirici, M.-M., Brandt-Talbot, A., Fennell, P.S., and Hallett, J.P. (2020). Fractionation by sequential antisolvent precipitation of grass, softwood, and hardwood lignins isolated using low-cost ionic liquids and water. ACS Sustain. Chem. Eng. 83: 751–761, https://doi.org/10.1021/acssuschemeng.9b06939.Suche in Google Scholar
Chen, J., Lu, F., Si, X., Nie, X., Chen, J., Lu, R., and Xu, J. (2016). High yield production of natural phenolic alcohols from woody biomass using a nickel‐based catalyst. ChemSusChem 9: 3353–3360, https://doi.org/10.1002/cssc.201601273.Suche in Google Scholar PubMed
Chen, Y.-L., Lo, C.-C., Liu, Y.-L., and Sun, Y.-M. (2023). Lignin extraction and fractionation from rice straw biorefinery residues. Sep. Purif. Technol. 326: 124778, https://doi.org/10.1016/j.seppur.2023.124778.Suche in Google Scholar
Costa, C.A.E., Pinto, P.C.R., and Rodrigues, A.E. (2018). Lignin fractionation from E. Globulus kraft liquor by ultrafiltration in a three stage membrane sequence. Sep. Purif. Technol. 192: 140–151, https://doi.org/10.1016/j.seppur.2017.09.066.Suche in Google Scholar
Cox, B.J. and Ekerdt, J.G. (2012). Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour. Technol. 118: 584–588, https://doi.org/10.1016/j.biortech.2012.05.012.Suche in Google Scholar PubMed
Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H., and Qiu, X. (2011). Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules 12: 1116–1125, https://doi.org/10.1021/bm101449b.Suche in Google Scholar PubMed
Dessbesell, L., Paleologou, M., Leitch, M., Pulkki, R., and Xu, C. (2020). Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renewable Sustainable Energy Rev. 123: 109768, https://doi.org/10.1016/j.rser.2020.109768.Suche in Google Scholar
Durand, E., Lecomte, J., and Villeneuve, P. (2013). Deep eutectic solvents: synthesis, application, and focus on lipase‐catalyzed reactions. Eur. J. Lipid Sci. Technol. 115: 379–385, https://doi.org/10.1002/ejlt.201200416.Suche in Google Scholar
Duval, A., Vilaplana, F., Crestini, C., and Lawoko, M. (2016). Solvent screening for the fractionation of industrial kraft lignin. Holzforschung 70: 11–20, https://doi.org/10.1515/hf-2014-0346.Suche in Google Scholar
El Hage, R., Brosse, N., Sannigrahi, P., and Ragauskas, A. (2010). Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym. Degrad. Stab. 95: 997–1003, https://doi.org/10.1016/j.polymdegradstab.2010.03.012.Suche in Google Scholar
Esmaeeli, A., Sarrafzadeh, M.-H., Zeighami, S., Kalantar, M., Bariki, S.G., Fallahi, A., Asgharnejad, H., and Ghaffari, S.-B. (2023). A comprehensive review on pulp and paper industries wastewater treatment advances. Ind. Eng. Chem. Res. 62: 8119–8145, https://doi.org/10.1021/acs.iecr.2c04393.Suche in Google Scholar
Espinoza-Acosta, J.L., Torres-Chávez, P.I., Carvajal-Millán, E., Ramírez-Wong, B., Bello-Pérez, L.A., and Montaño-Leyva, B. (2014). Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. BioResources 9, https://doi.org/10.15376/biores.9.2.3660-3687.Suche in Google Scholar
Evstigneev, E.I. (2010). Specific features of lignin dissolution in aqueous and aqueous-organic media. Russ. J. Appl. Chem. 83: 509–513, https://doi.org/10.1134/s1070427210030250.Suche in Google Scholar
Evstigneyev, E.I. and Shevchenko, S.M. (2018). Structure, chemical reactivity and solubility of lignin: a fresh look. Wood Sci. Technol. 53: 7–47, https://doi.org/10.1007/s00226-018-1059-1.Suche in Google Scholar
Fan, D., Yang, J., Xie, X., Cao, M., Xu, L., Qiu, X., Liu, Q., and Ouyang, X. (2023). Microwave-assisted fractionation of poplar sawdust into high-yield noncondensed lignin and carbohydrates in methanol/p-toluenesulfonic acid. Chem. Eng. J. 454: 140237, https://doi.org/10.1016/j.cej.2022.140237.Suche in Google Scholar
Faustino, H., Gil, N., Baptista, C., and Duarte, A.P. (2010). Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15: 9308–9322, https://doi.org/10.3390/molecules15129308.Suche in Google Scholar PubMed PubMed Central
Fernandes, C., Melro, E., Magalhães, S., Alves, L., Craveiro, R., Filipe, A., Valente, A.J.M., Martins, G., Antunes, F.E., Romano, A., et al.. (2021). New deep eutectic solvent assisted extraction of highly pure lignin from maritime pine sawdust (Pinus pinaster Ait.). Int. J. Biol. Macromol. 177: 294–305, https://doi.org/10.1016/j.ijbiomac.2021.02.088.Suche in Google Scholar PubMed
Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Alriols, M.G., and Labidi, J. (2019) Chapter 7 – lignin separation and fractionation by ultrafiltration. In: Galanakis, C.M. (Ed.). Separation of functional Molecules in Food by membrane technology. Academic Press, pp. 229–265.10.1016/B978-0-12-815056-6.00007-3Suche in Google Scholar
Gellerstedt, G. and Lindfors, E.-L. (1984). Structural changes in lignin during kraft pulping, 38. Holzforschung, pp. 151–158.10.1515/hfsg.1984.38.3.151Suche in Google Scholar
Ghahri, S. and Park, B.-D. (2023). Self-crosslinking of acetone-fractionated and glyoxalated hardwood kraft lignin as bio-adhesives for wood bonding. Ind. Crops Prod. 206: 117711, https://doi.org/10.1016/j.indcrop.2023.117711.Suche in Google Scholar
Goldmann, W.M., Ahola, J., Mikola, M., and Tanskanen, J. (2019). Solubility and fractionation of Indulin AT kraft lignin in ethanol-water media. Sep. Purif. Technol. 209: 826–832, https://doi.org/10.1016/j.seppur.2018.06.054.Suche in Google Scholar
Gullichsen, J., and Fogelholm, C. (1999). Book 6: chemical pulping. Helsinki [etc.]: Fapet Oy [etc.].Suche in Google Scholar
Hamzeh, Y., Chirat, C., Haarlemmer, G., Lachenal, D., Ashori, A., Mortha, G., and Demey Cedeno, H. (2023). Extraction of phenolic compounds from hydrothermal processing of black liquor: effect of reactor type and pH of recovered liquid phase. Chem. Eng. J. 470144269: 144269, https://doi.org/10.1016/j.cej.2023.144269.Suche in Google Scholar
Hansen, C.M. and Björkman, A. (1998). The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52: 335–344, https://doi.org/10.1515/hfsg.1998.52.4.335.Suche in Google Scholar
He, Y., Bagley, D.M., Leung, K.T., Liss, S.N., and Liao, B.-Q. (2012). Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol. Adv. 30: 817–858, https://doi.org/10.1016/j.biotechadv.2012.01.015.Suche in Google Scholar PubMed
Henriksson, G., Germgård, U., and Lindström, M.E. (2024). A review on chemical mechanisms of kraft pulping. Nord. Pulp Pap. Res. J. 39: 297–311, https://doi.org/10.1515/npprj-2023-0015.Suche in Google Scholar
Hu, J., Zhang, Q., and Lee, D.J. (2018). Kraft lignin biorefinery: a perspective. Bioresour. Technol. 247: 1181–1183, https://doi.org/10.1016/j.biortech.2017.08.169.Suche in Google Scholar PubMed
Humpert, D., Ebrahimi, M., and Czermak, P. (2016). Membrane technology for the recovery of lignin: a review. Membranes 6: 42, https://doi.org/10.3390/membranes6030042.Suche in Google Scholar PubMed PubMed Central
Hussin, M.H., Rahim, A.A., Mohamad Ibrahim, M.N., Perrin, D., and Brosse, N. (2015). Enhanced properties of oil palm fronds (OPF) lignin fractions produced via tangential ultrafiltration technique. Ind. Crops Prod. 66: 1–10, https://doi.org/10.1016/j.indcrop.2014.12.027.Suche in Google Scholar
Jääskeläinen, A.S., Liitiä, T., Mikkelson, A., and Tamminen, T. (2017). Aqueous organic solvent fractionation as means to improve lignin homogeneity and purity. Ind. Crops Prod. 103: 51–58, https://doi.org/10.1016/j.indcrop.2017.03.039.Suche in Google Scholar
Jiang, Z.-H. and Argyropoulos, D. (1999). Isolation and characterization of residual lignins in kraft pulps. J. Pulp Pap. Sci. 25: 25–29.Suche in Google Scholar
Jiang, X., Savithri, D., Du, X., Pawar, S., Jameel, H., Chang, H.-m., and Zhou, X. (2016). Fractionation and characterization of kraft lignin by sequential precipitation with various organic solvents. ACS Sustain. Chem. Eng. 5: 835–842, https://doi.org/10.1021/acssuschemeng.6b02174.Suche in Google Scholar
Jiang, Y., Zeng, X., Luque, R., Tang, X., Sun, Y., Lei, T., Liu, S., and Lin, L. (2017). Cooking with active oxygen and solid alkali: a promising alternative approach for lignocellulosic biorefineries. ChemSusChem 10: 3982–3993, https://doi.org/10.1002/cssc.201700906.Suche in Google Scholar PubMed
Jing, Z., Kuizhong, S., Guigan, F., Long, L., Qingwen, T., and Man, L.I. (2017). Effects of different pretreatment methods on chemical composition and enzymatic hydrolysis of wheat straw. Chem. Ind. For. Prod. 37: 53–60, https://doi.org/10.3969/j.issn.0253-2417.2017.05.007.Suche in Google Scholar
Jönsson, A.-S., Nordin, A.-K., and Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem. Eng. Res. Des. 86: 1271–1280, https://doi.org/10.1016/j.cherd.2008.06.003.Suche in Google Scholar
Karaaslan, M.A., Cho, M., Liu, L.-Y., Wang, H., and Renneckar, S. (2020). Refining the properties of softwood kraft lignin with acetone: effect of solvent fractionation on the thermomechanical behavior of electrospun fibers. ACS Sustain. Chem. Eng. 9: 458–470, https://doi.org/10.1021/acssuschemeng.0c07634.Suche in Google Scholar
Kekana, P., Sithole, B., and Ramjugernath, D. (2016). Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills. S. Afr. J. Sci. 112: 7, https://doi.org/10.17159/sajs.2016/20150280.Suche in Google Scholar
Koda, K., Koda, K., Gaspar, A.R., Yu, L., Yu, L., Yu, L., and Argyropoulos, D.S. (2005). Molecular weight-functional group relations in softwood residual kraft lignins. Holzforschung 59: 612–619, https://doi.org/10.1515/hf.2005.099.Suche in Google Scholar
Kong, Y., Xu, J., Zhou, J., and Wang, X. (2023). A universal approach for producing lignin-based monocomponent fiber by one-step ethanol fractionation. Int. J. Biol. Macromol. 242: 124751, https://doi.org/10.1016/j.ijbiomac.2023.124751.Suche in Google Scholar PubMed
Kudłak, B., Owczarek, K., and Namieśnik, J. (2015). Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review. Environ. Sci. Pollut. Res. 22: 1975–1992, https://doi.org/10.1007/s11356-015-4794-y.Suche in Google Scholar PubMed
Kumar, V. and Verma, P. (2023). A critical review on environmental risk and toxic hazards of refractory pollutants discharged in chlorolignin waste of pulp and paper mills and their remediation approaches for environmental safety. Environ. Res. 236: 116728, https://doi.org/10.1016/j.envres.2023.116728.Suche in Google Scholar PubMed
Lallave, M., Bedia, J., Ruiz‐Rosas, R., Rodríguez‐Mirasol, J., Cordero, T., Otero, J.C., Marquez, M., Barrero, A., and Loscertales, I.G. (2007). Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 19: 4292–4296, https://doi.org/10.1002/adma.200700963.Suche in Google Scholar
Lancefield, C.S., Panovic, I., Deuss, P.J., Barta, K., and Westwood, N.J. (2017). Pre-treatment of lignocellulosic feedstocks using biorenewable alcohols: towards complete biomass valorisation. Green Chem. 19: 202–214, https://doi.org/10.1039/c6gc02739c.Suche in Google Scholar
Lauberts, M., Sevastyanova, O., Ponomarenko, J., Dizhbite, T., Dobele, G., Volperts, A., Lauberte, L., and Telysheva, G. (2017). Fractionation of technical lignin with ionic liquids as a method for improving purity and antioxidant activity. Ind. Crops Prod. 95: 512–520, https://doi.org/10.1016/j.indcrop.2016.11.004.Suche in Google Scholar
Lawoko, M. and Samec, J.S.M. (2023). Kraft lignin valorization: biofuels and thermoset materials in focus. Curr. Opin. Green Sustainable Chem. 40: 100738, https://doi.org/10.1016/j.cogsc.2022.100738.Suche in Google Scholar
Li, J., Henriksson, G., and Gellerstedt, G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour. Technol. 98: 3061–3068, https://doi.org/10.1016/j.biortech.2006.10.018.Suche in Google Scholar PubMed
Li, M.-F., Sun, S.-N., Xu, F., and Sun, R.-C. (2012). Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep. Purif. Technol. 101: 18–25, https://doi.org/10.1016/j.seppur.2012.09.013.Suche in Google Scholar
Li, C., Huang, C., Zhao, Y., Zheng, C., Su, H., Zhang, L., Luo, W., Zhao, H., Wang, S., and Huang, L.-J. (2021). Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in bagasse. Processes 9384: 384, https://doi.org/10.3390/pr9020384.Suche in Google Scholar
Li, W., Tan, X., Miao, C., Zhang, Z., Wang, Y., Ragauskas, A.J., and Zhuang, X. (2023). Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production. Green Chem. 25: 1169–1178, https://doi.org/10.1039/d2gc04404h.Suche in Google Scholar
Liang, X., Liu, J., Fu, Y., and Chang, J. (2016). Influence of anti-solvents on lignin fractionation of eucalyptus globulus via green solvent system pretreatment. Sep. Purif. Technol. 163: 258–266, https://doi.org/10.1016/j.seppur.2016.03.006.Suche in Google Scholar
Ling, J.K.U., San Chan, Y., Nandong, J., Chin, S.F., and Ho, B.K. (2020). Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: characterization, solubilization capacity and antioxidant property. Lwt 133: 110096, https://doi.org/10.1016/j.lwt.2020.110096.Suche in Google Scholar
Lu, Y., Lu, Y.-C., Hu, H.-Q., Xie, F.-J., Wei, X.-Y., and Fan, X. (2017). Structural characterization of lignin and its degradation products with spectroscopic methods. J. Spectrosc. 2017: 1–15, https://doi.org/10.1155/2017/8951658.Suche in Google Scholar
Luo, H. and Abu-Omar, M.M. (2018). Lignin extraction and catalytic upgrading from genetically modified poplar. Green Chem. 20: 745–753, https://doi.org/10.1039/C7GC03417B.Suche in Google Scholar
Ma, S., Li, Z., Sperry, J., Tang, X., Sun, Y., Lin, L., Liu, J., and Zeng, X. (2024). CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose. Green Energy Environ. 9: 1101–1111, https://doi.org/10.1016/j.gee.2023.05.009.Suche in Google Scholar
Manorma, Ferreira, I., Alves, P., Gil, M.H., and Gando-Ferreira, L.M. (2021). Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep. Purif. Technol. 260: 118231, https://doi.org/10.1016/j.seppur.2020.118231.Suche in Google Scholar
Mazar, A. and Paleologou, M. (2023). New approach to recycle and valorize the first filtrate of the LignoForce system™: lignin extraction and its use in rigid lignin-based polyurethane foams. Int. J. Biol. Macromol. 244: 125346, https://doi.org/10.1016/j.ijbiomac.2023.125346.Suche in Google Scholar PubMed
Mendes, S.F., Pasquini, D., Cardoso, V.L., and Reis, M.H.M. (2021a). Ultrafiltration process for lignin-lean black liquor treatment at different acid conditions. Sep. Sci. Technol. 57: 571936–571947, https://doi.org/10.1080/01496395.2021.2013890.Suche in Google Scholar
Mendes, S.F., Rodrigues, J.S., de Lima, V.H., Botaro, V.R., Cardoso, V.L., and Reis, M.H.M. (2021b). Forward black liquor acid precipitation: lignin fractionation by ultrafiltration. Appl. Biochem. Biotechnol. 193: 1933079–1933097, https://doi.org/10.1007/s12010-021-03580-2.Suche in Google Scholar PubMed
Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Wyman, C.E., Cai, C.M., and Ragauskas, A.J. (2019). Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresour. Technol. 272: 202–208, https://doi.org/10.1016/j.biortech.2018.09.130.Suche in Google Scholar PubMed
Miller-Chou, B.A. and Koenig, J.L. (2003). A review of polymer dissolution. Prog. Polym. Sci. 28: 1223–1270, https://doi.org/10.1016/s0079-6700(03)00045-5.Suche in Google Scholar
Milovanoff, A., Posen, I.D., Saville, B.A., and MacLean, H.L. (2020). Well-to-wheel greenhouse gas implications of mid-level ethanol blend deployment in Canada’s light-duty fleet. Renewable Sustainable Energy Rev. 131: 110012, https://doi.org/10.1016/j.rser.2020.110012.Suche in Google Scholar
Mörck, R., Reimann, A., and Kringstad, K.P. (1988). Fractionation of kraft lignin by successive extraction with organic solvents. III. In: Fractionation of kraft lignin from birch. Holzforschung, pp. 42111–42116.10.1515/hfsg.1988.42.2.111Suche in Google Scholar
Moses, A., Komandur, J., Maarisetty, D., Mohapatra, P., and Baral, S.S. (2024). A review on photocatalytic hydrogen production potential from paper and pulp industry wastewater. Biomass Convers. Biorefin. 14: 3135–3159, https://doi.org/10.1007/s13399-022-02658-z.Suche in Google Scholar
Mussatto, S.I., Fernandes, M., and Roberto, I.C. (2007). Lignin recovery from brewer’s spent grain black liquor. Carbohydr. Polym. 70: 218–223, https://doi.org/10.1016/j.carbpol.2007.03.021.Suche in Google Scholar
Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M., and Noreen, A. (2016). Lignin-derivatives based polymers, blends and composites: a review. Int. J. Biol. Macromol. 93: 296–313, https://doi.org/10.1016/j.ijbiomac.2016.08.030.Suche in Google Scholar PubMed
Öhman, F., Theliander, H., Tomani, P., and Axegard, P. (2013). Method for separating lignin from black liquor. Google Patents.Suche in Google Scholar
Pang, T., Wang, G., Sun, H., Sui, W., and Si, C. (2021). Lignin fractionation: effective strategy to reduce molecule weight dependent heterogeneity for upgraded lignin valorization. Ind. Crops Prod. 165: 113442, https://doi.org/10.1016/j.indcrop.2021.113442.Suche in Google Scholar
Park, S.Y., Kim, J.-Y., Youn, H.J., and Choi, J.W. (2018). Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. Int. J. Biol. Macromol. 106: 793–802, https://doi.org/10.1016/j.ijbiomac.2017.08.069.Suche in Google Scholar PubMed
Park, S.Y., Kim, J.-Y., Youn, H.J., and Choi, J.W. (2019). Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting. Int. J. Biol. Macromol. 138: 1029–1034, https://doi.org/10.1016/j.ijbiomac.2019.07.157.Suche in Google Scholar PubMed
Passoni, V., Scarica, C., Levi, M., Turri, S., and Griffini, G. (2016). Fractionation of industrial softwood kraft lignin: solvent selection as a tool for tailored material properties. ACS Sustain. Chem. Eng. 4: 2232–2242, https://doi.org/10.1021/acssuschemeng.5b01722.Suche in Google Scholar
Patterson, R., West, K.A., Lovell, E.L., Hawkins, W.L., and Hibbert, H. (1941). Studies on lignin and related compounds. LI. The solvent fractionation of maple ethanol lignin. J. Am. Chem. Soc. 63: 2065–2070, https://doi.org/10.1021/ja01853a011.Suche in Google Scholar
Pye, E.K. and Lora, J.H. (1991). The AlcellTM process: a proven alternative to kraft pulping. Tappi J. 74: 113–118.Suche in Google Scholar
Quan, P., Kiziltas, A., Gondaliya, A., Siahkamari, M., Nejad, M., and Xie, X. (2022). Kraft lignin with improved homogeneity recovered directly from black liquor and its application in flexible polyurethane foams. ACS Omega 7: 16705–16715, https://doi.org/10.1021/acsomega.2c01206.Suche in Google Scholar PubMed PubMed Central
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G., Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak, D.J., Liotta, C.L., et al.. (2006). The path forward for biofuels and biomaterials. Science 311: 484–489, https://doi.org/10.1126/science.1114736.Suche in Google Scholar PubMed
Ralph, J., Lapierre, C., and Boerjan, W. (2019). Lignin structure and its engineering. Curr. Opin. Biotechnol. 56: 240–249, https://doi.org/10.1016/j.copbio.2019.02.019.Suche in Google Scholar PubMed
Renders, T., Cooreman, E., Van den Bosch, S., Schutyser, W., Koelewijn, S.F., Vangeel, T., Deneyer, A., Van den Bossche, G., Courtin, C.M., and Sels, B.F. (2018). Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem. 20: 4607–4619, https://doi.org/10.1039/c8gc01031e.Suche in Google Scholar
Ribca, I., Sochor, B., Roth, S.V., Lawoko, M., Meier, M.A.R., and Johansson, M. (2023). Effect of molecular organization on the properties of fractionated lignin-based thiol–Ene thermoset materials. ACS Omega 8: 25478–25486, https://doi.org/10.1021/acsomega.3c03022.Suche in Google Scholar PubMed PubMed Central
Rohde, V., Böringer, S., Tübke, B., Adam, C., Dahmen, N., and Schmiedl, D. (2018). Fractionation of three different lignins by thermal separation techniques—a comparative study. GCB Bioenergy 11: 206–217, https://doi.org/10.1111/gcbb.12546.Suche in Google Scholar
Saboe, P.O., Tomashek, E.G., Monroe, H.R., Haugen, S.J., Prestangen, R.L., Cleveland, N.S., Happs, R.M., Miscall, J., Ramirez, K.J., Katahira, R., et al.. (2022). Recovery of low molecular weight compounds from alkaline pretreatment liquor via membrane separations. Green Chem. 24: 3152–3166, https://doi.org/10.1039/d2gc00075j.Suche in Google Scholar
Sadeghifar, H., Wells, T., Le, R.K., Sadeghifar, F., Yuan, J.S., and Jonas Ragauskas, A. (2016). Fractionation of organosolv lignin using acetone:water and properties of the obtained fractions. ACS Sustain. Chem. Eng. 5: 580–587, https://doi.org/10.1021/acssuschemeng.6b01955.Suche in Google Scholar
Saha, K., Dwibedi, P., Ghosh, A., Sikder, J., Chakraborty, S., and Curcio, S. (2018). Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment. 3 Biotech. 8: 374, https://doi.org/10.1007/s13205-018-1399-4.Suche in Google Scholar PubMed PubMed Central
Santos, P.S.B.d., Erdocia, X., Gatto, D.A., and Labidi, J. (2014). Characterisation of kraft lignin separated by gradient acid precipitation. Ind. Crops Prod. 55: 149–154, https://doi.org/10.1016/j.indcrop.2014.01.023.Suche in Google Scholar
Schuerch, C. (1952). The solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin. J. Am. Chem. Soc. 74: 5061–5067, https://doi.org/10.1021/ja01140a020.Suche in Google Scholar
Sen, M., Li, W., Liu, H., Li, Z., Tang, X., Lin, L., and Zeng, X. (2024). Ethyl acetate fractionation improved the homogeneity and purity of CAOSA-extracted lignin. Ind. Crops Prod. 219118957, https://doi.org/10.1016/j.indcrop.2024.118957.Suche in Google Scholar
Sevastyanova, O., Helander, M., Chowdhury, S., Lange, H., Wedin, H., Zhang, L., Ek, M., Kadla, J.F., Crestini, C., and Lindström, M.E. (2014). Tailoring the molecular and thermo–mechanical properties of kraft lignin by ultrafiltration. J. Appl. Polym. Sci. 131, https://doi.org/10.1002/app.40799.Suche in Google Scholar
Song, Y., Shi, X., Yang, X., Zhang, X., and Tan, T. (2019). Successive organic solvent fractionation and characterization of heterogeneous lignin extracted by p-toluenesulfonic acid from hybrid poplar. Energy Fuels 34: 557–567, https://doi.org/10.1021/acs.energyfuels.9b03508.Suche in Google Scholar
Steephen, A., Preethi, V., Annenewmy, B., Parthasarathy, R., Reshwanth Reddy, P., Sairam, M., and Sathish Kumar, M. (2024). Solar photocatalytic hydrogen production from pulp and paper wastewater. Int. J. Hydrogen Energy 52: 1393–1404, https://doi.org/10.1016/j.ijhydene.2023.03.381.Suche in Google Scholar
Sun, H., Wang, G., Ge, J., Wei, N., Li, W., Sui, W., Parvez, A.M., and Si, C. (2021). Reduction of lignin heterogeneity using aqueous two-phase system: a facile and universal “one-step-three-fractions” approach. Int. J. Biol. Macromol. 186: 341–350, https://doi.org/10.1016/j.ijbiomac.2021.07.054.Suche in Google Scholar PubMed
Suota, M.J., da Silva, T.A., Zawadzki, S.F., Sassaki, G.L., Hansel, F.A., Paleologou, M., and Ramos, L.P. (2021). Chemical and structural characterization of hardwood and softwood LignoForce™ lignins. Ind. Crops Prod. 173: 114138, https://doi.org/10.1016/j.indcrop.2021.114138.Suche in Google Scholar
Tagami, A., Gioia, C., Lauberts, M., Budnyak, T., Moriana, R., Lindström, M.E., and Sevastyanova, O. (2019). Solvent fractionation of softwood and hardwood kraft lignins for more efficient uses: compositional, structural, thermal, antioxidant and adsorption properties. Ind. Crops Prod. 129: 123–134, https://doi.org/10.1016/j.indcrop.2018.11.067.Suche in Google Scholar
Toledano, A., Serrano, L., Garcia, A., Mondragon, I., and Labidi, J. (2010). Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem. Eng. J. 157: 93–99, https://doi.org/10.1016/j.cej.2009.10.056.Suche in Google Scholar
Toledano, A., Serrano, L., and Labidi, J. (2014). Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116: 617–624, https://doi.org/10.1016/j.fuel.2013.08.071.Suche in Google Scholar
Valderrama, O.J., Zedda, K.L., and Velizarov, S. (2021). Membrane filtration opportunities for the treatment of black liquor in the paper and pulp industry. Water 13: 2270, https://doi.org/10.3390/w13162270.Suche in Google Scholar
Vanholme, R., Demedts, B., Morreel, K., Ralph, J., and Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiol. 153: 895–905, https://doi.org/10.1104/pp.110.155119.Suche in Google Scholar PubMed PubMed Central
Verdía, P., Brandt, A., Hallett, J.P., Ray, M.J., and Welton, T. (2014). Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem. 16: 1617–1627.10.1039/c3gc41742eSuche in Google Scholar
Verdross, P., Guinchard, S., Woodward, R.T., and Bismarck, A. (2023). Black liquor-based epoxy resin: thermosets from untreated kraft lignin. Chem. Eng. J. 475: 145787, https://doi.org/10.1016/j.cej.2023.145787.Suche in Google Scholar
Vermaas, J.V., Crowley, M.F., and Beckham, G.T. (2020). Molecular lignin solubility and structure in organic solvents. ACS Sustain. Chem. Eng. 8: 17839–17850, https://doi.org/10.1021/acssuschemeng.0c07156.Suche in Google Scholar
Wang, G. and Chen, H. (2013). Fractionation and characterization of lignin from steam-exploded corn stalk by sequential dissolution in ethanol–water solvent. Sep. Purif. Technol. 120: 0402–0409, https://doi.org/10.1016/j.seppur.2013.10.029.Suche in Google Scholar
Wang, K., Xu, F., and Sun, R. (2010). Molecular characteristics of kraft-AQ pulping lignin fractionated by sequential organic solvent extraction. Int. J. Mol. Sci. 11: 2988–3001, https://doi.org/10.3390/ijms11082988.Suche in Google Scholar PubMed PubMed Central
Wang, Y.-Y., Li, M., Wyman, C.E., Cai, C.M., and Ragauskas, A.J. (2018). Fast fractionation of technical lignins by organic cosolvents. ACS Sustain. Chem. Eng. 6: 6064–6072, https://doi.org/10.1021/acssuschemeng.7b04546.Suche in Google Scholar
Wang, G., Liu, X., Yang, B., Si, C., Parvez, A.M., Jang, J., and Ni, Y. (2019). Using green γ-valerolactone/water solvent to decrease lignin heterogeneity by gradient precipitation. ACS Sustain. Chem. Eng. 7: 10112–10120, https://doi.org/10.1021/acssuschemeng.9b01641.Suche in Google Scholar
Wang, Z., Zhang, Z., Wang, H., and Deuss, P.J. (2022). Tuning lignin properties by mild ionic-liquid-mediated selective alcohol incorporation. Chem Catal. 2: 1407–1427, https://doi.org/10.1016/j.checat.2022.04.005.Suche in Google Scholar
Wibowo, E.S. and Park, B.-D. (2023a). Probing the relationship between chemical structure and thermal degradation behavior of acetone fractionated kraft lignin. J. Anal. Appl. Pyrolysis 172: 106028, https://doi.org/10.1016/j.jaap.2023.106028.Suche in Google Scholar
Wibowo, E.S. and Park, B.-D. (2023b). The role of acetone-fractionated kraft lignin molecular structure on surface adhesion to formaldehyde-based resins. Int. J. Biol. Macromol. 225: 2251449–2251461, https://doi.org/10.1016/j.ijbiomac.2022.11.202.Suche in Google Scholar PubMed
Xia, Q., Liu, Y., Meng, J., Cheng, W., Chen, W., Liu, S., Liu, Y., Li, J., and Yu, H. (2018). Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 20: 2711–2721, https://doi.org/10.1039/c8gc00900g.Suche in Google Scholar
Yang, Y., Xu, J., Kong, Y., Zhou, J., and Wang, X. (2023). Breakthrough of lignin valorization: a novel alcohol-dichoromethane binary mixture solvent for lignin dissolution with excellent properties. Int. J. Biol. Macromol. 225: 219–226, https://doi.org/10.1016/j.ijbiomac.2022.10.252.Suche in Google Scholar PubMed
Yang, J., Huang, Y., Yang, W., Jiao, L., Zhang, S., and Dai, H. (2024). Efficient production of low molecular weight lignin from eucalyptus wood through methanol-alkali system. Ind. Crops Prod. 207: 117728, https://doi.org/10.1016/j.indcrop.2023.117728.Suche in Google Scholar
Yong, K.J. and Wu, T.Y. (2023). Recent advances in the application of alcohols in extracting lignin with preserved β-O-4 content from lignocellulosic biomass. Bioresour. Technol. 384: 129238, https://doi.org/10.1016/j.biortech.2023.129238.Suche in Google Scholar PubMed
Yoo, C.G., Meng, X., Pu, Y., and Ragauskas, A.J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 301: 122784, https://doi.org/10.1016/j.biortech.2020.122784.Suche in Google Scholar PubMed
Yuan, T.-Q., He, J., Xu, F., and Sun, R.-C. (2009). Fractionation and physico-chemical analysis of degraded lignins from the black liquor of Eucalyptus pellita KP-AQ pulping. Polym. Degrad. Stab. 94: 1142–1150, https://doi.org/10.1016/j.polymdegradstab.2009.03.019.Suche in Google Scholar
Zhang, X., Zhou, Y., Xiong, W., Ma, J., and Jiang, W. (2022). Critical role of solvent extraction sequence in the fractional separation of alkaline lignin. Fuel 322: 124268, https://doi.org/10.1016/j.fuel.2022.124268.Suche in Google Scholar
Zhang, H., Zhang, X., Li, W., Wu, W., Tang, B., and Zhu, C. (2023a). Efficient pretreatment of cornstalks for lignin valorization using p-toluene sulfonic acid coupling ethylene glycol. Biomass Convers. Biorefin. 14: 18707–18720, https://doi.org/10.1007/s13399-023-04075-2.Suche in Google Scholar
Zhang, Y., Ren, H., Maarof, H., Mat Udin, S., Liu, Y., Li, M., Alias, H., and Duan, E. (2023b). The effect of water content on lignin solubilization in deep eutectic solvents. J. Mol. Liq. 374121271: 121271, https://doi.org/10.1016/j.molliq.2023.121271.Suche in Google Scholar
Zhu, W., Westman, G., and Theliander, H. (2013). Investigation and characterization of lignin precipitation in the LignoBoost process. J. Wood Chem. Technol. 34: 77–97, https://doi.org/10.1080/02773813.2013.838267.Suche in Google Scholar
Ziesig, R., Tomani, P., and Theliander, H. (2014). Production of a pure lignin product Part 2: separation of lignin from membrane filtration Permeates of black liquor. Cellul. Chem. Technol.: 48805–48811.Suche in Google Scholar
Zijlstra, D.S., Lahive, C.W., Analbers, C.A., Figueirêdo, M.B., Wang, Z., Lancefield, C.S., and Deuss, P.J. (2020). Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation. ACS Sustain. Chem. Eng. 8: 5119–5131, https://doi.org/10.1021/acssuschemeng.9b07222.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Bleaching
- The effect of xylanase on the fine structure of a bleached kraft softwood pulp
- Mechanical Pulping
- Development of handsheet mechanical properties linked to fibre distributions in two-stage low consistency refining of high yield pulp
- Paper Technology
- Analysis of finger ridges in paper manufacturing and development of a qualitative model of their formation
- Paper Physics
- Microfibrillated cellulose coatings for biodegradable electronics
- Paper Chemistry
- Preparation of CMC-β-CD-sulfaguanidine and its application for protection of paper
- Drying characteristics and numerical simulation of tissue paper
- Hemicellulose as an additive in papermaking
- Coating
- Synthesis of carboxymethyl cellulose-β∼cyclodextrin-coated sulfaguanidine and its enhanced antimicrobial efficacy for paper protection
- Integrating barrier chemicals into coating systems for optimized white top testliner performance
- Printing
- Quantifying optical and mechanical contributions to dot gain
- Packaging
- The impact of cellulosic pulps on thermoforming process: effects on formation time and drainage efficiency
- Environmental Impact
- Assessing the impact of substituting hypo sludge (paper pulp) in cement and introducing natural fiber in the form of human hair to enhance compressive strength in concrete
- Recycling
- Atomization numerical simulation of high solids content bamboo pulping black liquor based on VOF model
- A review of the fractionation and properties of lignin derived from pulping black liquor and lignocellulose pretreatment
- Lignin
- In-situ construct dynamic bonds between lignin and PBAT by epoxidized soybean oil to improve interfacial compatibility: processing, characterization, and antibacterial activity for food packaging
- Separation of high-yield and high-purity lignin from Elm wood using ternary deep eutectic solvents
Artikel in diesem Heft
- Frontmatter
- Bleaching
- The effect of xylanase on the fine structure of a bleached kraft softwood pulp
- Mechanical Pulping
- Development of handsheet mechanical properties linked to fibre distributions in two-stage low consistency refining of high yield pulp
- Paper Technology
- Analysis of finger ridges in paper manufacturing and development of a qualitative model of their formation
- Paper Physics
- Microfibrillated cellulose coatings for biodegradable electronics
- Paper Chemistry
- Preparation of CMC-β-CD-sulfaguanidine and its application for protection of paper
- Drying characteristics and numerical simulation of tissue paper
- Hemicellulose as an additive in papermaking
- Coating
- Synthesis of carboxymethyl cellulose-β∼cyclodextrin-coated sulfaguanidine and its enhanced antimicrobial efficacy for paper protection
- Integrating barrier chemicals into coating systems for optimized white top testliner performance
- Printing
- Quantifying optical and mechanical contributions to dot gain
- Packaging
- The impact of cellulosic pulps on thermoforming process: effects on formation time and drainage efficiency
- Environmental Impact
- Assessing the impact of substituting hypo sludge (paper pulp) in cement and introducing natural fiber in the form of human hair to enhance compressive strength in concrete
- Recycling
- Atomization numerical simulation of high solids content bamboo pulping black liquor based on VOF model
- A review of the fractionation and properties of lignin derived from pulping black liquor and lignocellulose pretreatment
- Lignin
- In-situ construct dynamic bonds between lignin and PBAT by epoxidized soybean oil to improve interfacial compatibility: processing, characterization, and antibacterial activity for food packaging
- Separation of high-yield and high-purity lignin from Elm wood using ternary deep eutectic solvents