Home How the body rules the nose
Article
Licensed
Unlicensed Requires Authentication

How the body rules the nose

  • Annika Cichy

    Annika Cichy did a B.Sc. and M.Sc. in Biology at the Ruhr-University of Bochum. In 2013, she obtained her Ph.D. in Neuroscience at RWTH Aachen University. Right after, she joined the Department of Neurobiology at Northwestern University, USA, for her postdoctoral training. In 2019, she received the Polak young investigator award from the Association of Chemoreception Sciences, and in 2020, an independent early career research award from the NIH/NIDCD. In 2022, she joined the Institute of Physiology II at the University of Bonn, where she investigates how the physiological state modulates olfactory processing.

    ORCID logo EMAIL logo
Published/Copyright: July 5, 2022
Become an author with De Gruyter Brill

Abstract

In order to survive, an organism has to adapt its behavioral actions to the current context by carefully balancing sensory input with physiological state and need. This challenge becomes particularly apparent for olfactory stimuli (volatile chemicals), which can signal not only food sources, mating partners, and offspring, but also pathogens, competitors, and predators. To achieve this difficult task, information processing in the olfactory system is strongly modulated by internal state (for example, metabolic or endocrine), environmental context, and previous experience. This article provides an overview how different internal states impact olfactory processing and discusses potential underlying mechanisms. It starts with a brief excurse on a leading model to study olfaction—Mus musculus—and concludes with implications for human health and disease.

Zusammenfassung

Um zu überleben, muss ein Organismus sein Verhalten an den Umgebungskontext anpassen. Hierzu müssen eingehende sensorische Reize mit dem aktuellen physiologischen Zustand abgeglichen werden. Besonders deutlich wird diese Herausforderung bei olfaktorischen Reizen, die Nahrung, Sexualpartner und Nachkommen, aber auch Krankheitserreger, Konkurrenten und Fressfeinde signalisieren können. Um diese schwierige Aufgabe zu bewältigen, wird die Informationsverarbeitung im Geruchssystem stark durch den inneren Zustand (z. B. Stoffwechsel- oder Hormonstatus), den Umweltkontext und frühere Erfahrungen moduliert. In diesem Artikel gebe ich einen Überblick über den Einfluss verschiedener physiologischer Zustände auf die Geruchswahrnehmung, und erörtere mögliche zugrunde liegende Mechanismen. Ich stelle zunächst einen führenden Modelorganismus zur Untersuchung des Geruchsinns vor - Mus musculus - und diskutiere abschließend die Bedeutung für Gesundheit und Krankheit des menschlichen Organismus.


Corresponding author: Annika Cichy, Institute of Physiology II Faculty of Medicine, University of Bonn, Nussallee 11, 53115 Bonn, Germany, E-mail:

About the author

Annika Cichy

Annika Cichy did a B.Sc. and M.Sc. in Biology at the Ruhr-University of Bochum. In 2013, she obtained her Ph.D. in Neuroscience at RWTH Aachen University. Right after, she joined the Department of Neurobiology at Northwestern University, USA, for her postdoctoral training. In 2019, she received the Polak young investigator award from the Association of Chemoreception Sciences, and in 2020, an independent early career research award from the NIH/NIDCD. In 2022, she joined the Institute of Physiology II at the University of Bonn, where she investigates how the physiological state modulates olfactory processing.

Acknowledgments

I would like to thank Prof. Dr. Ilona Grunwald Kadow (University of Bonn) for the insightful comments on the manuscript and Prof. Adam Dewan, Ph.D. (Florida State University) for the contribution of a photograph used in the figure.

  1. Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

Baum, M.J. and Cherry, J.A. (2015). Processing by the main olfactory system of chemosignals that facilitate mammalian reproduction. Horm. Behav. 68, 53–64, https://doi.org/10.1016/j.yhbeh.2014.06.003.Search in Google Scholar

Bhutani, S., Howard, J.D., Reynolds, R., Zee, P.C., Gottfried, J., and Kahnt, T. (2019). Olfactory connectivity mediates sleep-dependent food choices in humans. Elife 8, https://doi.org/10.7554/eLife.49053.Search in Google Scholar

Blomkvist, A. and Hofer, M. (2021). Olfactory impairment and close social relationships. A Narrative Review. Chem Senses 46, https://doi.org/10.1093/chemse/bjab037.Search in Google Scholar

Boesveldt, S., and de Graaf, K. (2017). The differential role of smell and taste for eating behavior. Perception 46, 307–319, https://doi.org/10.1177/0301006616685576.Search in Google Scholar

Boesveldt, S., Yee, J.R., McClintock, M.K., and Lundstrom, J.N. (2017). Olfactory function and the social lives of older adults: A matter of sex. Sci. Rep. 7, 45118, https://doi.org/10.1038/srep45118.Search in Google Scholar

Bombail, V. (2019). Perception and emotions: On the relationships between stress and olfaction. Appl. Anim. Behav. Sci. 212, 98–108, https://doi.org/10.1016/j.applanim.2018.12.013.Search in Google Scholar

Brand, G. and Millot, J.L. (2001). Sex differences in human olfaction: between evidence and enigma. Q. J. Exp. Psychol. B 54, 259–270, https://doi.org/10.1080/02724990143000045.Search in Google Scholar

Brunert, D. and Rothermel, M. (2021). Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res. 383, 507–524, https://doi.org/10.1007/s00441-020-03365-9.Search in Google Scholar

Buck, L. and Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65, 175–187, https://doi.org/10.1016/0092-8674(91)90418-x.Search in Google Scholar

Cameron, E.L. (2014). Pregnancy and olfaction: A review. Front. Psychol. 5, 67, https://doi.org/10.3389/fpsyg.2014.00067.Search in Google Scholar PubMed PubMed Central

Carlson, K.S., Gadziola, M.A., Dauster, E.S., and Wesson, D.W. (2018). Selective attention controls olfactory decisions and the neural encoding of odors. Curr. Biol. 28, 2195–2205 e2194, https://doi.org/10.1016/j.cub.2018.05.011.Search in Google Scholar

Chelette, B.M., Loeven, A.M., Gatlin, D.N., Landi Conde, D.R., Huffstetler, C.M., Qi, M., and Fadool, D.A. (2022). Consumption of dietary fat causes loss of olfactory sensory neurons and associated circuitry that is not mitigated by voluntary exercise in mice. J Physiol. 600, 1473–1495, https://doi.org/10.1113/JP282112.Search in Google Scholar

Cichy, A., Dewan, A., Zhang, J., Kaye, S., Teng, T., Blanchard, K., Feinstein, P., and Bozza, T. (2021). Map-independent representation of an aggression-promoting social cue in the main olfactory pathway. bioRxiv, https://doi.org/10.1101/2021.12.30.474554.Search in Google Scholar

D’Aniello, B., Semin, G.R., Scandurra, A., and Pinelli, C. (2017). The vomeronasal organ: A neglected organ. Front. Neuroanat. 11, 70, https://doi.org/10.3389/fnana.2017.00070.Search in Google Scholar

D’Souza, R.D. and Vijayaraghavan, S. (2014). Paying attention to smell: Cholinergic signaling in the olfactory bulb. Front. Synaptic Neurosci. 6, 21, https://doi.org/10.3389/fnsyn.2014.00021.Search in Google Scholar

Desjardins, C., Maruniak, J.A., and Bronson, F.H. (1973). Social rank in house mice: Differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182, 939–941, https://doi.org/10.1126/science.182.4115.939.Search in Google Scholar

Dewan, A., Cichy, A., Zhang, J., Miguel, K., Feinstein, P., Rinberg, D., and Bozza, T. (2018). Single olfactory receptors set odor detection thresholds. Nat. Commun. 9, 2887, https://doi.org/10.1038/s41467-018-05129-0.Search in Google Scholar

Dey, S., Chamero, P., Pru, J.K., Chien, M.S., Ibarra-Soria, X., Spencer, K.R., Logan, D.W., Matsunami, H., Peluso, J.J., and Stowers, L. (2015). Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161, 1334–1344, https://doi.org/10.1016/j.cell.2015.04.052.Search in Google Scholar

Dillon, T.S., Fox, L.C., Han, C., and Linster, C. (2013). 17beta-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice. Behav. Neurosci. 127, 923–931, https://doi.org/10.1037/a0034839.Search in Google Scholar

Doty, R.L., Applebaum, S., Zusho, H., and Settle, R.G. (1985). Sex differences in odor identification ability: A cross-cultural analysis. Neuropsychologia 23, 667–672, https://doi.org/10.1016/0028-3932(85)90067-3.Search in Google Scholar

Doty, R.L. and Cameron, E.L. (2009). Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 97, 213–228, https://doi.org/10.1016/j.physbeh.2009.02.032.Search in Google Scholar PubMed PubMed Central

Doty, R.L., Tourbier, I., Ng, V., Neff, J., Armstrong, D., Battistini, M., Sammel, M.D., Gettes, D., Evans, D.L., Mirza, N., et al.. (2015). Influences of hormone replacement therapy on olfactory and cognitive function in postmenopausal women. Neurobiol. Aging 36, 2053–2059, https://doi.org/10.1016/j.neurobiolaging.2015.02.028.Search in Google Scholar PubMed PubMed Central

Eckstein, E., Pyrski, M., Pinto, S., Freichel, M., Vennekens, R., and Zufall, F. (2020). Cyclic regulation of Trpm4 expression in female vomeronasal neurons driven by ovarian sex hormones. Mol. Cell. Neurosci. 105, 103495, https://doi.org/10.1016/j.mcn.2020.103495.Search in Google Scholar PubMed

Egger, V., and Kuner, T. (2021). Olfactory bulb granule cells: Specialized to link coactive glomerular columns for percept generation and discrimination of odors. Cell Tissue Res. 383, 495–506, https://doi.org/10.1007/s00441-020-03402-7.Search in Google Scholar PubMed PubMed Central

Fan, Z., Zhu, H., Zhou, T., Wang, S., Wu, Y., and Hu, H. (2019). Using the tube test to measure social hierarchy in mice. Nat. Protoc. 14, 819–831, https://doi.org/10.1038/s41596-018-0116-4.Search in Google Scholar PubMed

Gadziola, M.A., Stetzik, L.A., Wright, K.N., Milton, A.J., Arakawa, K., M., and Wesson, D.W. (2020). Del mar CortijoA neural system that represents the association of odors with rewarded outcomes and promotes behavioral engagement. Cell Rep. 32, 107919, https://doi.org/10.1016/j.celrep.2020.107919.Search in Google Scholar PubMed PubMed Central

Granados-Fuentes, D., Tseng, A., and Herzog, E.D. (2006). A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci. 26, 12219–12225, https://doi.org/10.1523/JNEUROSCI.3445-06.2006.Search in Google Scholar PubMed PubMed Central

Han, P., Roitzsch, C., Horstmann, A., Possel, M., and Hummel, T. (2021). Increased brain reward responsivity to food-related odors in obesity. Obesity 29, 1138–1145, https://doi.org/10.1002/oby.23170.Search in Google Scholar PubMed

Harvey, S., Jemiolo, B., and Novotny, M. (1989). Pattern of volatile compounds in dominant and subordinate male mouse urine. J. Chem. Ecol. 15, 2061–2072, https://doi.org/10.1007/BF01207438.Search in Google Scholar PubMed

Herz, R.S., Van Reen, E., Barker, D.H., Hilditch, C.J., Bartz, A.L., and Carskadon, M.A. (2017). The influence of circadian timing on olfactory sensitivity. Chem. Senses 43, 45–51, https://doi.org/10.1093/chemse/bjx067.Search in Google Scholar PubMed PubMed Central

Hill, J.M., Lesniak, M.A., Pert, C.B., and Roth, J. (1986). Autoradiographic localization of insulin receptors in rat brain: Prominence in olfactory and limbic areas. Neuroscience 17, 1127–1138, https://doi.org/10.1016/0306-4522(86)90082-5.Search in Google Scholar

Horio, N., and Liberles, S.D. (2021). Hunger enhances food-odour attraction through a neuropeptide Y spotlight. Nature 592, 262–266, https://doi.org/10.1038/s41586-021-03299-4.Search in Google Scholar PubMed PubMed Central

Hoyk, Z., Csakvari, E., Gyenes, A., Siklos, L., Harada, N., and Parducz, A. (2014). Aromatase and estrogen receptor beta expression in the rat olfactory bulb: Neuroestrogen action in the first relay station of the olfactory pathway? Acta Neurobiol. Exp. 74, 1–14.10.55782/ane-2014-1967Search in Google Scholar

Hughes, L.F., McAsey, M.E., Donathan, C.L., Smith, T., Coney, P., and Struble, R.G. (2009). Effects of hormone replacement therapy on olfactory sensitivity: Cross-sectional and longitudinal studies. Climacteric 5, 140–150, https://doi.org/10.1080/cmt.5.2.140.150.Search in Google Scholar

Hummel, T., Gollisch, R., Wildt, G., and Kobal, G. (1991). Changes in olfactory perception during the menstrual cycle. Experientia 47, 712–715, https://doi.org/10.1007/BF01958823.Search in Google Scholar PubMed

Hurst, J.L. (1993). The priming effects of urine substrate marks on interactions between male house mice, Mus musculus domesticus Schwarz & Schwarz. Anim. Behav. 45, 55–81, https://doi.org/10.1006/anbe.1993.1007.Search in Google Scholar

Hussain, A., Ucpunar, H.K., Zhang, M., Loschek, L.F., and Grunwald Kadow, I.C. (2016). Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLoS Biol. 14, e1002455, https://doi.org/10.1371/journal.pbio.1002455.Search in Google Scholar PubMed PubMed Central

Imai, T. and Sakano, H. (2009). Odorant receptor gene choice and axonal projection in the mouse olfactory system. Results Probl. Cell Differ. 47, 57–75, https://doi.org/10.1007/400_2008_3.Search in Google Scholar PubMed

Jones, R.B. and Nowell, N.W. (1974a). A comparison of the aversive and female attractant properties of urine from dominant and subordinate male mice. Anim. Learn. Behav. 2, 141–144, https://doi.org/10.3758/bf03199141.Search in Google Scholar PubMed

Jones, R.B. and Nowell, N.W. (1974b). Effects of androgen on the aversive properties of male mouse urine. J. Endocrinol. 60, 19–25, https://doi.org/10.1677/joe.0.0600019.Search in Google Scholar PubMed

Kanageswaran, N., Demond, M., Nagel, M., Schreiner, B.S., Baumgart, S., Scholz, P., Altmuller, J., Becker, C., Doerner, J.F., Conrad, H., et al.. (2015). Deep sequencing of the murine olfactory receptor neuron transcriptome. PLoS One 10, e0113170, https://doi.org/10.1371/journal.pone.0113170.Search in Google Scholar PubMed PubMed Central

Kass, M.D., Czarnecki, L.A., Moberly, A.H., and McGann, J.P. (2017). Differences in peripheral sensory input to the olfactory bulb between male and female mice. Sci. Rep. 7, 45851, https://doi.org/10.1038/srep45851.Search in Google Scholar PubMed PubMed Central

Kato, H.K., Chu, M.W., Isaacson, J.S., and Komiyama, T. (2012). Dynamic sensory representations in the olfactory bulb: Modulation by wakefulness and experience. Neuron 76, 962–975, https://doi.org/10.1016/j.neuron.2012.09.037.Search in Google Scholar PubMed PubMed Central

Keller, A. (2011). Attention and olfactory consciousness. Front. Psychol. 2, 380, https://doi.org/10.3389/fpsyg.2011.00380.Search in Google Scholar PubMed PubMed Central

Kirgezen, T., Yucetas, U., Server, E.A., Ovunc, O., and Yigit, O. (2021). Possible effects of low testosterone levels on olfactory function in males. Braz J Otorhinolaryngol 87, 702–710, https://doi.org/10.1016/j.bjorl.2020.03.001.Search in Google Scholar PubMed

Koelega, H.S. and Koster, E.P. (1974). Some experiments on sex differences in odor perception. Ann. N. Y. Acad. Sci. 237, 234–246, https://doi.org/10.1111/j.1749-6632.1974.tb49859.x.Search in Google Scholar PubMed

Kollo, M., Schmaltz, A., Abdelhamid, M., Fukunaga, I., and Schaefer, A.T. (2014). ‘Silent’ mitral cells dominate odor responses in the olfactory bulb of awake mice. Nat. Neurosci. 17, 1313–1315, https://doi.org/10.1038/nn.3768.Search in Google Scholar PubMed PubMed Central

Kondoh, K., Lu, Z., Ye, X., Olson, D.P., Lowell, B.B., and Buck, L.B. (2016). A specific area of olfactory cortex involved in stress hormone responses to predator odours. Nature 532, 103–106, https://doi.org/10.1038/nature17156.Search in Google Scholar PubMed PubMed Central

Li, Q., Korzan, W.J., Ferrero, D.M., Chang, R.B., Roy, D.S., Buchi, M., Lemon, J.K., Kaur, A.W., Stowers, L., Fendt, M., et al.. (2013). Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr. Biol. 23, 11–20, https://doi.org/10.1016/j.cub.2012.10.047.Search in Google Scholar PubMed PubMed Central

Lin, D.Y., Zhang, S.Z., Block, E., and Katz, L.C. (2005). Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477, https://doi.org/10.1038/nature03414.Search in Google Scholar PubMed

Liu, D., Stowie, A., de Zavalia, N., Leise, T., Pathak, S.S., Drewes, L.R., Davidson, A.J., Amir, S., Sonenberg, N., and Cao, R. (2018). mTOR signaling in VIP neurons regulates circadian clock synchrony and olfaction. Proc. Natl. Acad. Sci. U. S. A. 115, E3296–E3304, https://doi.org/10.1073/pnas.1721578115.Search in Google Scholar PubMed PubMed Central

McGann, J.P. (2015). Associative learning and sensory neuroplasticity: How does it happen and what is it good for? Learn. Mem. 22, 567–576, https://doi.org/10.1101/lm.039636.115.Search in Google Scholar

McGann, J.P. (2017). Poor human olfaction is a 19th-century myth. Science 356, https://doi.org/10.1126/science.aam7263.Search in Google Scholar

Meffre, D., Labombarda, F., Delespierre, B., Chastre, A., De Nicola, A.F., Stein, D.G., Schumacher, M., and Guennoun, R. (2013). Distribution of membrane progesterone receptor alpha in the male mouse and rat brain and its regulation after traumatic brain injury. Neuroscience 231, 111–124, https://doi.org/10.1016/j.neuroscience.2012.11.039.Search in Google Scholar

Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N.R., Taniguchi, H., Tasic, B., Huang, Z.J., He, Z., et al.. (2011). Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196, https://doi.org/10.1038/nature09714.Search in Google Scholar

Mombaerts, P. (2004). Odorant receptor gene choice in olfactory sensory neurons: The one receptor-one neuron hypothesis revisited. Curr. Opin. Neurobiol. 14, 31–36, https://doi.org/10.1016/j.conb.2004.01.014.Search in Google Scholar

Mombaerts, P., Wang, F., Dulac, C., Chao, S.K., Nemes, A., Mendelsohn, M., Edmondson, J., and Axel, R. (1996). Visualizing an olfactory sensory map. Cell 87, 675–686, https://doi.org/10.1016/s0092-8674(00)81387-2.Search in Google Scholar

Monahan, K. and Lomvardas, S. (2015). Monoallelic expression of olfactory receptors. Annu. Rev. Cell Dev. Biol. 31, 721–740, https://doi.org/10.1146/annurev-cellbio-100814-125308.Search in Google Scholar PubMed PubMed Central

Mossman, C.A. and Drickamer, L.C. (1996). Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138, https://doi.org/10.1037/0735-7036.110.2.131.Search in Google Scholar PubMed

Nagayama, S., Homma, R., and Imamura, F. (2014). Neuronal organization of olfactory bulb circuits. Front. Neural Circ. 8, 98, https://doi.org/10.3389/fncir.2014.00098.Search in Google Scholar PubMed PubMed Central

Nelson, A.C., Cunningham, C.B., Ruff, J.S., and Potts, W.K. (2015). Protein pheromone expression levels predict and respond to the formation of social dominance networks. J. Evol. Biol. 28, 1213–1224, https://doi.org/10.1111/jeb.12643.Search in Google Scholar PubMed PubMed Central

Nolasco, N., Juarez, C., Morgado, E., Meza, E., and Caba, M. (2021). A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity. PLoS One 7, e47779, doi:https://doi.org/10.1371/journal.pone.0047779.Search in Google Scholar

Palouzier-Paulignan, B., Lacroix, M.C., Aime, P., Baly, C., Caillol, M., Congar, P., Julliard, A.K., Tucker, K., and Fadool, D.A. (2012). Olfaction under metabolic influences. Chem. Senses. 37, 769–797, https://doi.org/10.1093/chemse/bjs059.Search in Google Scholar

Peng, M., Coutts, D., Wang, T., and Cakmak, Y.O. (2019). Systematic review of olfactory shifts related to obesity. Obes. Rev. 20, 325–338, https://doi.org/10.1111/obr.12800.Search in Google Scholar

Philpott, C.M. and Boak, D. (2014). The impact of olfactory disorders in the United Kingdom. Chem. Senses 39, 711–718, https://doi.org/10.1093/chemse/bju043.Search in Google Scholar

Ramaekers, M.G., Verhoef, A., Gort, G., Luning, P.A., and Boesveldt, S. (2016). Metabolic and sensory influences on odor sensitivity in humans. Chem. Senses 41, 163–168, https://doi.org/10.1093/chemse/bjv068.Search in Google Scholar

Ressler, K.J., Sullivan, S.L., and Buck, L.B. (1994). Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255, https://doi.org/10.1016/0092-8674(94)90015-9.Search in Google Scholar

Richardson, B.E., Vander Woude, E.A., Sudan, R., Thompson, J.S., and Leopold, D.A. (2004). Altered olfactory acuity in the morbidly obese. Obes. Surg. 14, 967–969, https://doi.org/10.1381/0960892041719617.Search in Google Scholar PubMed

Riera, C.E., Tsaousidou, E., Halloran, J., Follett, P., Hahn, O., Pereira, M.M.A., Ruud, L.E., Alber, J., Tharp, K., Anderson, C.M., et al.. (2017). The sense of smell impacts metabolic health and obesity. Cell Metabol. 26, 198–211, https://doi.org/10.1016/j.cmet.2017.06.015. e195.Search in Google Scholar PubMed

Rinberg, D., Koulakov, A., and Gelperin, A. (2006). Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865, https://doi.org/10.1523/JNEUROSCI.0884-06.2006.Search in Google Scholar PubMed PubMed Central

Root, C.M., Ko, K.I., Jafari, A., and Wang, J.W. (2011). Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144, https://doi.org/10.1016/j.cell.2011.02.008.Search in Google Scholar PubMed PubMed Central

Soria-Gomez, E., Bellocchio, L., Reguero, L., Lepousez, G., Martin, C., Bendahmane, M., Ruehle, S., Remmers, F., Desprez, T., Matias, I., et al.. (2014). The endocannabinoid system controls food intake via olfactory processes. Nat. Neurosci. 17, 407–415, https://doi.org/10.1038/nn.3647.Search in Google Scholar

Sorokowski, P., Karwowski, M., Misiak, M., Marczak, M.K., Dziekan, M., Hummel, T., and Sorokowska, A. (2019). Sex differences in human olfaction: A meta-analysis. Front. Psychol. 10, 242, https://doi.org/10.3389/fpsyg.2019.00242.Search in Google Scholar

Sosulski, D.L., Bloom, M.L., Cutforth, T., Axel, R., and Datta, S.R. (2011). Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216, https://doi.org/10.1038/nature09868.Search in Google Scholar

Sun, X., Veldhuizen, M.G., Babbs, A.E., Sinha, R., and Small, D.M. (2016). Perceptual and brain response to odors is associated with body mass index and postprandial total ghrelin reactivity to a meal. Chem. Senses. 41, 233–248, https://doi.org/10.1093/chemse/bjv081.Search in Google Scholar

Tan, S. and Stowers, L. (2020). Bespoke behavior: Mechanisms that modulate pheromone-triggered behavior. Curr. Opin. Neurobiol. 64, 143–150, https://doi.org/10.1016/j.conb.2020.05.003.Search in Google Scholar

Thompson, D.A., Moskowitz, H.R., and Campbell, R.G. (1977). Taste and olfaction in human obesity. Physiol. Behav. 19, 335–337, https://doi.org/10.1016/0031-9384(77)90348-1.Search in Google Scholar

Thoss, M., Luzynski, K.C., Enk, V.M., Razzazi-Fazeli, E., Kwak, J., Ortner, I., and Penn, D.J. (2019). Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci. Rep. 9, 489, https://doi.org/10.1038/s41598-018-36887-y.Search in Google Scholar

Vassar, R., Chao, S.K., Sitcheran, R., Nunez, J.M., Vosshall, L.B., and Axel, R. (1994). Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991, https://doi.org/10.1016/0092-8674(94)90029-9.Search in Google Scholar

Velluzzi, F., Deledda, A., Onida, M., Loviselli, A., Crnjar, R., and Sollai, G. (2022). Relationship between olfactory function and BMI in normal weight healthy subjects and patients with overweight or obesity. Nutrients 14, https://doi.org/10.3390/nu14061262.Search in Google Scholar PubMed PubMed Central

Williamson, C.M., Lee, W., Romeo, R.D., and Curley, J.P. (2017). Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol. Behav. 171, 110–119, https://doi.org/10.1016/j.physbeh.2016.12.038.Search in Google Scholar PubMed

Zou, L.Q., Yang, Z.Y., Wang, Y., Lui, S.S., Chen, A.T., Cheung, E.F., and Chan, R.C. (2016). What does the nose know? Olfactory function predicts social network size in human. Sci. Rep. 6, 25026, https://doi.org/10.1038/srep25026.Search in Google Scholar PubMed PubMed Central

Published Online: 2022-07-05
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/nf-2022-0003/html
Scroll to top button