Startseite Glial cells as target for antidepressants in neuropathic pain
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Glial cells as target for antidepressants in neuropathic pain

  • Elisa Damo

    Elisa Damo received her M.Sc. in Molecular Biology/Neurobiology from the University of Torino in 2019. Currently, she is pursuing her PhD at Heidelberg in the group of Manuela Simonetti in the department of Prof. Rohini Kuner at the Pharmacology Institute. Her research field covers neuropathic pain, glial biology, and cell signaling.

    ORCID logo
    , Phillip Rieder

    Phillip Rieder received his M.Sc. in Human- and Molecular Biology at University of Saarland in 2017. His PhD work addresses the role of glial Ca2+ signaling in the spinal cord and dorsal root ganglia.

    ORCID logo
    , Ilknur Coban

    Ilknur Coban is currently a PhD in Agarwal laboratory at the Anatomy and Cell Biology Institute of Heidelberg University, Germany. Her research interests are physiology of astrocytes, glia-neuron interactions, and neuropathic pain.

    ORCID logo
    , Rangel Leal Silva

    Rangel Leal Silva is currently working as postdoctoral fellow in the Agarwal laboratory at the Institute of Anatomy and Molecular Biology of Heidelberg University. His research interest is toward the understanding of the role of neuron-glia-immune interaction in neurological disorders, currently focusing on chronic pain.

    ORCID logo
    , Frank Kirchhoff

    Frank Kirchhoff received his PhD (Dr. rer. nat.) degree from Heidelberg University. Since 2009, he is full professor of molecular physiology at the University of Saarland in Homburg. His research focuses on the molecular and cellular mechanisms of neuron-glia interactions.

    ORCID logo
    , Manuela Simonetti

    Manuela Simonetti received her PhD in Neuroscience at SISSA (Triste, Italy). Currently, she is a senior scientist and Principal Investigator (CRC1158) in the laboratory of Prof. Rohini Kuner at the Institute of Pharmacology, University of Heidelberg, working in molecular-cellular neurobiology and neurophysiology, focusing her attention on pain transmission.

    ORCID logo EMAIL logo
    und Amit Agarwal

    Amit Agarwal received his Ph.D. in neurosciences, at the Max-Planck-Institute of Experimental Medicine, Göttingen. He did his post-doctoral training in the Department of Neuroscience at the Johns Hopkins University, USA. Since 2018, he is an independent group leader funded by the Chica and Heinz Schaller Foundation at the Heidelberg University. His laboratory uses in vivo multiphoton microscopy, single-cell genetics, mouse transgenics, and AI-based computational methodologies to decipher cellular connectivity and molecular pathways by which neurons and glia interact, interconnect and integrate into the neural networks in the context of health and disease (including pain).

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill
Neuroforum
Aus der Zeitschrift Neuroforum Band 28 Heft 2

Abstract

Several forms of chronic pain do not respond to the conventional analgesics, such as opioids, but can be treated with antidepressants, such as serotonin and noradrenalin reuptake inhibitors (SNRIs). Recent studies indicate that noradrenalin signalling is a key target for SNRI-induced analgesia in neuropathic pain. SNRIs inhibit chronic pain by blocking reuptake of noradrenalin and subsequent activation of adrenergic receptors on neurons in the dorsal horn of the spinal cord. However, in the nervous system, various subtypes of adrenergic receptors are highly expressed by astrocytes and microglial cells. Activation of these receptors on astrocytes engages complex intracellular signalling pathways and prevents inflammatory changes of microglia, which in turn can affect neuronal activity. Hence, SNRIs-induced modulations of the glial cell physiology can impact neural circuit functions and pain perception. In this review, we summarize our current knowledge on the impact of SNRIs on glial cells and in modulating chronic pain in experimental animal models.

Zusammenfassung

Konventionelle Analgetika wie Opioide helfen häufig nicht bei chronischen Schmerzen, interessanterweise im Gegensatz zu Antidepressiva wie Serotonin- und Noradrenalin-Wiederaufnahmehemmern (SNRI). Neuere Untersuchungen zeigen nun, dass in der Tat Noradrenalin-abhängige Signalwege bei SNRI-induzierter Analgesie beteiligt sind. SNRIs induzieren erhöhte Noradrenalin-Spiegel im Dorsalhorn des Rückenmarks. Die folgende Aktivierung adrenerger Rezeptoren der Spinalneurone führt zu einer deutlichen Reduktion der neuropathischen Schmerzen. Im Nervensystem werden jedoch verschiedene Subtypen von adrenergen Rezeptoren in hohem Maße von Astrozyten und Mikrogliazellen exprimiert. Die Aktivierung dieser Rezeptoren auf Astrozyten setzt komplexe intrazelluläre Signalwege in Gang und verhindert entzündliche Veränderungen der Mikroglia, die ihrerseits die neuronale Aktivität beeinflussen können. Daher können SNRI-induzierte Modulationen der Gliazellphysiologie die Funktionen neuronaler Schaltkreise und die Schmerzwahrnehmung beeinflussen. In dieser Übersicht fassen wir unser aktuelles Wissen über die Auswirkungen von SNRIs auf Gliazellen und die Modulation chronischer Schmerzen in experimentellen Tiermodellen zusammen.


Corresponding authors: Dr. Manuela Simonetti, Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany, E-mail: ; and Dr. Amit Agarwal, Institute of Anatomy and Cell Biology, The Chica and Heinz Schaller Research Group, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; and Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany, E-mail:

Award Identifier / Grant number: Project A09

About the authors

Elisa Damo

Elisa Damo received her M.Sc. in Molecular Biology/Neurobiology from the University of Torino in 2019. Currently, she is pursuing her PhD at Heidelberg in the group of Manuela Simonetti in the department of Prof. Rohini Kuner at the Pharmacology Institute. Her research field covers neuropathic pain, glial biology, and cell signaling.

Phillip Rieder

Phillip Rieder received his M.Sc. in Human- and Molecular Biology at University of Saarland in 2017. His PhD work addresses the role of glial Ca2+ signaling in the spinal cord and dorsal root ganglia.

Ilknur Coban

Ilknur Coban is currently a PhD in Agarwal laboratory at the Anatomy and Cell Biology Institute of Heidelberg University, Germany. Her research interests are physiology of astrocytes, glia-neuron interactions, and neuropathic pain.

Rangel Leal Silva

Rangel Leal Silva is currently working as postdoctoral fellow in the Agarwal laboratory at the Institute of Anatomy and Molecular Biology of Heidelberg University. His research interest is toward the understanding of the role of neuron-glia-immune interaction in neurological disorders, currently focusing on chronic pain.

Frank Kirchhoff

Frank Kirchhoff received his PhD (Dr. rer. nat.) degree from Heidelberg University. Since 2009, he is full professor of molecular physiology at the University of Saarland in Homburg. His research focuses on the molecular and cellular mechanisms of neuron-glia interactions.

Manuela Simonetti

Manuela Simonetti received her PhD in Neuroscience at SISSA (Triste, Italy). Currently, she is a senior scientist and Principal Investigator (CRC1158) in the laboratory of Prof. Rohini Kuner at the Institute of Pharmacology, University of Heidelberg, working in molecular-cellular neurobiology and neurophysiology, focusing her attention on pain transmission.

Amit Agarwal

Amit Agarwal received his Ph.D. in neurosciences, at the Max-Planck-Institute of Experimental Medicine, Göttingen. He did his post-doctoral training in the Department of Neuroscience at the Johns Hopkins University, USA. Since 2018, he is an independent group leader funded by the Chica and Heinz Schaller Foundation at the Heidelberg University. His laboratory uses in vivo multiphoton microscopy, single-cell genetics, mouse transgenics, and AI-based computational methodologies to decipher cellular connectivity and molecular pathways by which neurons and glia interact, interconnect and integrate into the neural networks in the context of health and disease (including pain).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscripts and approved submission.

  2. Research funding: This work was in part supported by the Deutsche Forschungsgemeinschaft in form of a SFB1158 grant (Project A09), and the Chica and Heinz Schaller Foundation (to AA).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Agarwal, A., Wu, P.-H., Hughes, E.G., Fukaya, M., Tischfield, M.A., Langseth, A.J., Wirtz, D., and Bergles, D.E. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93, 587–605.e7, https://doi.org/10.1016/j.neuron.2016.12.034.Suche in Google Scholar PubMed PubMed Central

Ahimsadasan, N., Reddy, V., and Kumar, A. (2022). Neuroanatomy, gorsal root ganglion [Updated 2021 Sep 7]. StatPearls [Internet] (StatPearls Publishing: Treasure Island (FL)). https://www.ncbi.nlm.nih.gov/books/NBK532291/.Suche in Google Scholar

Bair, M.J., Robinson, R.L., Katon, W., and Kroenke, K. (2003). Depression and pain comorbidity: A literature review. Arch. Intern. Med. 163, 2433–2445, https://doi.org/10.1001/archinte.163.20.2433.Suche in Google Scholar PubMed

Berger, A.A., Liu, Y., Possoit, H., Rogers, A.C., Moore, W., Gress, K., Cornett, E.M., Kaye, A.D., Imani, F., Sadegi, K., et al.. (2021). Dorsal root ganglion (DRG) and chronic pain. Anesthesiol. Pain Med. 11, e113020, https://doi.org/10.5812/aapm.113020.Suche in Google Scholar PubMed PubMed Central

Berta, T., Park, C.K., Xu, Z.Z., Xie, R.G., Liu, T., Lü, N., Liu, Y.C., and Ji, R.R. (2014). Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. J. Clin. Invest. 124, 1173–1186, https://doi.org/10.1172/JCI72230.Suche in Google Scholar PubMed PubMed Central

Berta, T., Qadri, Y., Tan, P.H., and Ji, R.R. (2017). Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opin. Ther. Targets 21, 695–703, https://doi.org/10.1080/14728222.2017.1328057.Suche in Google Scholar PubMed PubMed Central

Bohren, Y., Tessier, L.H., Megat, S., Petitjean, H., Hugel, S., Daniel, D., Kremer, M., Fournel, S., Hein, L., Schlichter, R., et al.. (2013). Antidepressants suppress neuropathic pain by a peripheral β2-adrenoceptor mediated anti-TNFα mechanism. Neurobiol. Dis. 60, 39–50, https://doi.org/10.1016/j.nbd.2013.08.012.Suche in Google Scholar PubMed

Boucher, T.J., Okuse, K., Bennett, D.L., Munson, J.B., Wood, J.N., and McMahon, S.B. (2000). Potent analgesic effects of GDNF in neuropathic pain states. Science 290, 124–127, https://doi.org/10.1126/science.290.5489.124.Suche in Google Scholar PubMed

Bravo, L., Llorca-Torralba, M., Berrocoso, E., and Micó, J.A. (2019). Monoamines as drug targets in chronic pain: Focusing on neuropathic pain. Front. Neurosci. 13, 1268, https://doi.org/10.3389/fnins.2019.01268.Suche in Google Scholar PubMed PubMed Central

Carozzi, V.A., Canta, A., Oggioni, N., Ceresa, C., Marmiroli, P., Konvalinka, J., Zoia, C., Bossi, M., Ferrarese, C., Tredici, G., et al.. (2008). Expression and distribution of ‘high affinity’ glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system. J. Anat. 213, 539–546, https://doi.org/10.1111/j.1469-7580.2008.00984.x.Suche in Google Scholar PubMed PubMed Central

Carroll, I., Mackey, S., and Gaeta, R. (2007). The role of adrenergic receptors and pain: The good, the bad, and the unknown. Semin. Anesth. Perioperat. Med. Pain 26, 17–21, https://doi.org/10.1053/j.sane.2006.11.005.Suche in Google Scholar

Chen, Y., Zhang, X., Wang, C., Li, G., Gu, Y., and Huang, L.Y. (2008). Activation of P2X7 receptors in glial satellite cells reduces pain through downregulation of P2X3 receptors in nociceptive neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 16773–16778, https://doi.org/10.1073/pnas.0801793105.Suche in Google Scholar

Drożdżal, S., Rosik, J., Lechowicz, K., Machaj, F., Szostak, B., Majewski, P., Rotter, I., and Kotfis, K. (2020). COVID-19: Pain management in patients with SARS-CoV-2 infection-molecular mechanisms, challenges, and perspectives. Brain Sci. 10, 465, https://doi.org/10.3390/brainsci10070465.Suche in Google Scholar

Dueñas, M., Ojeda, B., Salazar, A., Mico, J.A., and Failde, I. (2016). A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 9, 457–467, https://doi.org/10.2147/JPR.S105892.Suche in Google Scholar

Esposito, M.F., Malayil, R., Hanes, M., and Deer, T. (2019). Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med. 20, S23–S30, https://doi.org/10.1093/pm/pnz012.Suche in Google Scholar

Finnerup, N.B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R.H., Gilron, I., Haanpää, M., Hansson, P., Jensen, T.S., et al.. (2015). Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 14, 162–173, https://doi.org/10.1016/S1474-4422(14)70251-0.Suche in Google Scholar

Finnerup, N.B., Otto, M., McQuay, H.J., Jensen, T.S., and Sindrup, S.H. (2005). Algorithm for neuropathic pain treatment: An evidence based proposal. Pain 118, 289–305, https://doi.org/10.1016/j.pain.2005.08.013.Suche in Google Scholar PubMed

Gaidin, S.G., Zinchenko, V.P., Sergeev, A.I., Teplov, I.Y., Mal’tseva, V.N., and Kosenkov, A.M. (2020). Activation of alpha-2 adrenergic receptors stimulates GABA release by astrocytes. Glia 68, 1114–1130, https://doi.org/10.1002/GLIA.23763.Suche in Google Scholar PubMed

Gosselin, R.D., Bebber, D., and Decosterd, I. (2010). Upregulation of the GABA transporter GAT-1 in the gracile nucleus in the spared nerve injury model of neuropathic pain. Neurosci. Lett. 480, 132–137, https://doi.org/10.1016/j.neulet.2010.06.023.Suche in Google Scholar PubMed

Guan, Z., Kuhn, J.A., Wang, X., Colquitt, B., Solorzano, C., Vaman, S., Guan, A.K., Evans-Reinsch, Z., Braz, J., Devor, M., et al.. (2016). Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat. Neurosci. 19, 94–101, https://doi.org/10.1038/nn.4189.Suche in Google Scholar PubMed PubMed Central

Hanani, M. (2005). Satellite glial cells in sensory ganglia: From form to function. Brain Res. Rev. 48, 457–476, https://doi.org/10.1016/j.brainresrev.2004.09.001.Suche in Google Scholar PubMed

Handa, J., Sekiguchi, M., Krupkova, O., and Konno, S. (2016). The effect of serotonin-noradrenaline reuptake inhibitor duloxetine on the intervertebral disk-related radiculopathy in rats. Eur. Spine J. 25, 877–887, https://doi.org/10.1007/s00586-015-4239-9.Suche in Google Scholar PubMed

Hanisch, U.K. and Kettenmann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394, https://doi.org/10.1038/nn1997.Suche in Google Scholar PubMed

He, J.H., Liu, R.P., Peng, Y.M., Guo, Q., Zhu, L.B., Lian, Y.Z., Hu, B.L., Fan, H.H., Zhang, X., and Zhu, J.H. (2021). Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation. J. Neuroinflammation 18, 1–14, https://doi.org/10.1186/S12974-021-02097-Z/FIGURES/8.Suche in Google Scholar

Herculano-Houzel, S. (2014). The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62, 1377–1391, https://doi.org/10.1002/glia.22683.Suche in Google Scholar PubMed

Hertz, L., Lovatt, D., Goldman, S.A., and Nedergaard, M. (2010). Adrenoceptors in brain: Cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem. Int. 57, 411, https://doi.org/10.1016/J.NEUINT.2010.03.019.Suche in Google Scholar

Hisaoka-Nakashima, K., Taki, S., Watanabe, S., Nakamura, Y., Nakata, Y., and Morioka, N. (2019). Mirtazapine increases glial cell line-derived neurotrophic factor production through lysophosphatidic acid 1 receptor-mediated extracellular signal-regulated kinase signaling in astrocytes. Eur. J. Pharmacol. 860, 172539, https://doi.org/10.1016/J.EJPHAR.2019.172539.Suche in Google Scholar

Inoue, K. and Tsuda, M. (2018). Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 19, 138–152, https://doi.org/10.1038/nrn.2018.2.Suche in Google Scholar PubMed

Ji, R.R., Berta, T., and Nedergaard, M. (2013). Glia and pain: Is chronic pain a gliopathy? Pain 154, S10–S28, https://doi.org/10.1016/j.pain.2013.06.022.Suche in Google Scholar PubMed PubMed Central

Ji, R.R., Chamessian, A., and Zhang, Y.Q. (2016). Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577, https://doi.org/10.1126/science.aaf8924.Suche in Google Scholar PubMed PubMed Central

Ji, R.R. and Suter, M.R. (2007). p38 MAPK, microglial signaling, and neuropathic pain. Mol. Pain 3, 33, https://doi.org/10.1186/1744-8069-3-33.Suche in Google Scholar PubMed PubMed Central

Kawasaki, Y., Zhang, L., Cheng, J.K., and Ji, R.R. (2008). Cytokine mechanisms of central sensitization: Distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci. 28, 5189–5194, https://doi.org/10.1523/JNEUROSCI.3338-07.2008.Suche in Google Scholar PubMed PubMed Central

Kim, S.I., Shin, J., Tran, Q., Park, H., Kwon, H.H., Shin, N., Hwang, J.A., Shin, H.J., Lee, J., Lee, W.H., et al.. (2021). Application of PLGA nanoparticles to enhance the action of duloxetine on microglia in neuropathic pain. Biomater. Sci. 9, 6295–6307, https://doi.org/10.1039/d1bm00486g.Suche in Google Scholar PubMed

Kim, S.K., Hayashi, H., Ishikawa, T., Shibata, K., Shigetomi, E., Shinozaki, Y., Inada, H., Roh, S.E., Kim, S.J., Lee, G., et al.. (2016a). Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain. J. Clin. Invest. 126, 1983–1997, https://doi.org/10.1172/JCI82859.Suche in Google Scholar PubMed PubMed Central

Kim, Y.S., Anderson, M., Park, K., Zheng, Q., Agarwal, A., Gong, C., Saijilafu, Young, L., He, S., LaVinka, P.C., et al.. (2016b). Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91, 1085–1096, https://doi.org/10.1016/j.neuron.2016.07.044.Suche in Google Scholar PubMed PubMed Central

Kimura, M., Hayashida, K., Eisenach, J.C., Saito, S., and Obata, H. (2013). Relief of hypersensitivity after nerve injury from systemic donepezil involves spinal cholinergic and γ-aminobutyric acid mechanisms. Anesthesiology 118, 173–180, https://doi.org/10.1097/ALN.0b013e318277a81c.Suche in Google Scholar PubMed

Kohro, Y., Matsuda, T., Yoshihara, K., Kohno, K., Koga, K., Katsuragi, R., Oka, T., Tashima, R., Muneta, S., Yamane, T., et al.. (2020). Spinal astrocytes in superficial laminae gate brainstem descending control of mechanosensory hypersensitivity. Nat. Neurosci. 23, 1376–1387, https://doi.org/10.1038/s41593-020-00713-4.Suche in Google Scholar PubMed

Kremer, M., Salvat, E., Muller, A., Yalcin, I., and Barrot, M. (2016). Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 338, 183–206, https://doi.org/10.1016/j.neuroscience.2016.06.057.Suche in Google Scholar PubMed

Kronschläger, M.T., Drdla-Schutting, R., Gassner, M., Honsek, S.D., Teuchmann, H.L., and Sandkühler, J. (2016). Gliogenic LTP spreads widely in nociceptive pathways. Science 354, 1144–1148, https://doi.org/10.1126/science.aah5715.Suche in Google Scholar PubMed PubMed Central

Lee, Y.C. and Chen, P.P. (2010). A review of SSRIs and SNRIs in neuropathic pain. Expet Opin. Pharmacother. 11, 2813–2825, https://doi.org/10.1517/14656566.2010.507192.Suche in Google Scholar PubMed

Li, T., Chen, X., Zhang, C., Zhang, Y., and Yao, W. (2019). An update on reactive astrocytes in chronic pain. J. Neuroinflammation 16, 140, https://doi.org/10.1186/s12974-019-1524-2.Suche in Google Scholar PubMed PubMed Central

Liem, L., van Dongen, E., Huygen, F.J., Staats, P., and Kramer, J. (2016). The dorsal root ganglion as a therapeutic target for chronic pain. Reg. Anesth. Pain Med. 41, 511–519, https://doi.org/10.1097/AAP.0000000000000408.Suche in Google Scholar

Liu, B. and Eisenach, J.C. (2005). Hyperexcitability of axotomized and neighboring unaxotomized sensory neurons is reduced days after perineural clonidine at the site of injury. J. Neurophysiol. 94, 3159–3167, https://doi.org/10.1152/jn.00623.2005.Suche in Google Scholar

Luo, C., Kuner, T., and Kuner, R. (2014). Synaptic plasticity in pathological pain. Trends Neurosci. 37, 343–355, https://doi.org/10.1016/j.tins.2014.04.002.Suche in Google Scholar

Martini, R., Fischer, S., López-Vales, R., and David, S. (2008). Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 56, 1566–1577, https://doi.org/10.1002/glia.20766.Suche in Google Scholar

Meller, S.T., Dykstra, C., Grzybycki, D., Murphy, S., and Gebhart, G.F. (1994). The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33, 1471–1478, https://doi.org/10.1016/0028-3908(94)90051-5.Suche in Google Scholar

Mori, I., Goshima, F., Koshizuka, T., Imai, Y., Kohsaka, S., Koide, N., Sugiyama, T., Yoshida, T., Yokochi, T., Kimura, Y., et al.. (2003). Iba1-expressing microglia respond to herpes simplex virus infection in the mouse trigeminal ganglion. Mol. Brain Res. 120, 52–56, https://doi.org/10.1016/j.molbrainres.2003.10.003.Suche in Google Scholar PubMed

Murray, I., Bhanot, G., and Bhargava, A. (2021). Neuron-glia-immune triad and cortico-limbic system in pathology of pain. Cells 10, 1553, https://doi.org/10.3390/cells10061553.Suche in Google Scholar PubMed PubMed Central

Nagata, K., Imai, T., Yamashita, T., Tsuda, M., Tozaki-Saitoh, H., and Inoue, K. (2009). Antidepressants inhibit P2X4 receptor function: A possible involvement in neuropathic pain relief. Mol. Pain 5, 20, https://doi.org/10.1186/1744-8069-5-20.Suche in Google Scholar PubMed PubMed Central

Nakajima, K., Obata, H., Iriuchijima, N., and Saito, S. (2012). An increase in spinal cord noradrenaline is a major contributor to the antihyperalgesic effect of antidepressants after peripheral nerve injury in the rat. Pain 153, 990–997, https://doi.org/10.1016/j.pain.2012.01.029.Suche in Google Scholar PubMed

Nam, Y., Kim, J.H., Kim, J.H., Jha, M.K., Jung, J.Y., Lee, M.G., Choi, I.S., Jang, I.S., Lim, D.G., Hwang, S.H., et al.. (2016). Reversible induction of pain hypersensitivity following optogenetic stimulation of spinal astrocytes. Cell Rep. 17, 3049–3061, https://doi.org/10.1016/J.CELREP.2016.11.043.Suche in Google Scholar PubMed

Newman-Tancredi, A., Bardin, L., Auclair, A., Colpaert, F., Depoortère, R., and Varney, M.A. (2018). NLX-112, a highly selective 5-HT. Brain Res. 1688, 1–7, https://doi.org/10.1016/j.brainres.2018.03.016.Suche in Google Scholar

Obata, H. (2017). Analgesic mechanisms of antidepressants for neuropathic pain. Int. J. Mol. Sci. 18, 2483, https://doi.org/10.3390/ijms18112483.Suche in Google Scholar

Ohtori, S., Takahashi, K., Moriya, H., and Myers, R.R. (2004). TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: Studies in murine DRG and spinal cord. Spine 29, 1082–1088, https://doi.org/10.1097/00007632-200405150-00006.Suche in Google Scholar

Oyama, T., Ueda, M., Kuraishi, Y., Akaike, A., and Satoh, M. (1996). Dual effect of serotonin on formalin-induced nociception in the rat spinal cord. Neurosci. Res. 25, 129–135, https://doi.org/10.1016/0168-0102(96)01034-6.Suche in Google Scholar

Poplawski, G., Ishikawa, T., Brifault, C., Lee-Kubli, C., Regestam, R., Henry, K.W., Shiga, Y., Kwon, H., Ohtori, S., Gonias, S.L., et al.. (2018). Schwann cells regulate sensory neuron gene expression before and after peripheral nerve injury. Glia 66, 1577–1590, https://doi.org/10.1002/glia.23325.Suche in Google Scholar

Salm, A.K. and McCarthy, K.D. (1992). The evidence for astrocytes as a target for central noradrenergic activity: Expression of adrenergic receptors. Brain Res. Bull. 29, 265–275, https://doi.org/10.1016/0361-9230(92)90056-4.Suche in Google Scholar

Salsitz, E.A. (2016). Chronic pain, chronic opioid addiction: A complex nexus. J. Med. Toxicol. 12, 54–57, https://doi.org/10.1007/s13181-015-0521-9.Suche in Google Scholar PubMed PubMed Central

Santello, M., Bisco, A., Nevian, N.E., Lacivita, E., Leopoldo, M., and Nevian, T. (2017). The brain-penetrant 5-HT. Neurobiol. Dis. 106, 214–221, https://doi.org/10.1016/j.nbd.2017.07.005.Suche in Google Scholar PubMed PubMed Central

Shen, S., Tiwari, N., Madar, J., Mehta, P., and Qiao, L.Y. (2022). Beta 2-adrenergic receptor mediates noradrenergic action to induce cyclic adenosine monophosphate response element-binding protein phosphorylation in satellite glial cells of dorsal root ganglia to regulate visceral hypersensitivity. Pain 163, 180–192, https://doi.org/10.1097/j.pain.0000000000002330.Suche in Google Scholar PubMed PubMed Central

Spray, D.C. and Hanani, M. (2019). Gap junctions, pannexins and pain. Neurosci. Lett. 695, 46–52, https://doi.org/10.1016/j.neulet.2017.06.035.Suche in Google Scholar PubMed PubMed Central

Sun, L., Fang, L., Lian, B., Xia, J.J., Zhou, C.J., Wang, L., Mao, Q., Wang, X.F., Gong, X., Liang, Z.H., et al.. (2017). Biochemical effects of venlafaxine on astrocytes as revealed by 1 H NMR-based metabolic profiling. Mol. Biosyst. 13, 338–349, https://doi.org/10.1039/C6MB00651E.Suche in Google Scholar

Tang, J., Bair, M., and Descalzi, G. (2021). Reactive astrocytes: Critical players in the development of chronic pain. Front. Psychiatr. 12, 682056, https://doi.org/10.3389/fpsyt.2021.682056.Suche in Google Scholar

Tang, X., Schmidt, T.M., Perez-Leighton, C.E., and Kofuji, P. (2010). Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 166, 397–407, https://doi.org/10.1016/j.neuroscience.2010.01.005.Suche in Google Scholar

Tavares, I., Costa-Pereira, J.T., and Martins, I. (2021). Monoaminergic and opioidergic modulation of brainstem circuits: New insights into the clinical challenges of pain treatment? Front. Pain Res. 2, 696515, https://doi.org/10.3389/fpain.2021.696515.Suche in Google Scholar

Tawfik, M.K., Helmy, S.A., Badran, D.I., and Zaitone, S.A. (2018). Neuroprotective effect of duloxetine in a mouse model of diabetic neuropathy: Role of glia suppressing mechanisms. Life Sci. 205, 113–124, https://doi.org/10.1016/j.lfs.2018.05.025.Suche in Google Scholar

Tsuda, M., Inoue, K., and Salter, M.W. (2005). Neuropathic pain and spinal microglia: A big problem from molecules in “small” glia. Trends Neurosci. 28, 101–107, https://doi.org/10.1016/j.tins.2004.12.002.Suche in Google Scholar

Tsuda, M., Shigemoto-Mogami, Y., Koizumi, S., Mizokoshi, A., Kohsaka, S., Salter, M.W., and Inoue, K. (2003). P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783, https://doi.org/10.1038/nature01786.Suche in Google Scholar

Vollmar, P., Haghikia, A., Dermietzel, R., and Faustmann, P.M. (2008). Venlafaxine exhibits an anti-inflammatory effect in an inflammatory co-culture model. Int. J. Neuropsychopharmacol. 11, 111–117, https://doi.org/10.1017/S1461145707007729.Suche in Google Scholar

Wagner, R. and Myers, R.R. (1996). Schwann cells produce tumor necrosis factor alpha: Expression in injured and non-injured nerves. Neuroscience 73, 625–629, https://doi.org/10.1016/0306-4522(96)00127-3.Suche in Google Scholar

Wen, Y.R., Suter, M.R., Kawasaki, Y., Huang, J., Pertin, M., Kohno, T., Berde, C.B., Decosterd, I., and Ji, R.R. (2007). Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology 107, 312–321, https://doi.org/10.1097/01.anes.0000270759.11086.e7.Suche in Google Scholar PubMed

Woolf, C.J. and Salter, M.W. (2000). Neuronal plasticity: Increasing the gain in pain. Science 288, 1765–1769, https://doi.org/10.1126/science.288.5472.1765.Suche in Google Scholar PubMed

Xie, W., Strong, J.A., and Zhang, J.M. (2009). Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160, 847–857, https://doi.org/10.1016/j.neuroscience.2009.03.016.Suche in Google Scholar PubMed PubMed Central

Yalcin, I., Tessier, L.H., Petit-Demoulière, N., Waltisperger, E., Hein, L., Freund-Mercier, M.J., and Barrot, M. (2010). Chronic treatment with agonists of beta(2)-adrenergic receptors in neuropathic pain. Exp. Neurol. 221, 115–121, https://doi.org/10.1016/j.expneurol.2009.10.008.Suche in Google Scholar PubMed

Yamashita, A., Hamada, A., Suhara, Y., Kawabe, R., Yanase, M., Kuzumaki, N., Narita, M., Matsui, R., and Okano, H. (2014). Astrocytic activation in the anterior cingulate cortex is critical for sleep disorder under neuropathic pain. Synapse 68, 235–247, https://doi.org/10.1002/syn.21733.Suche in Google Scholar PubMed

Yamashita, T., Yamamoto, S., Zhang, J., Kometani, M., Tomiyama, D., Kohno, K., Tozaki-Saitoh, H., Inoue, K., and Tsuda, M. (2016). Duloxetine inhibits microglial P2X4 receptor function and alleviates neuropathic pain after peripheral nerve injury. PLoS One 11, e0165189, https://doi.org/10.1371/journal.pone.0165189.Suche in Google Scholar PubMed PubMed Central

Yu, X., Liu, H., Hamel, K.A., Morvan, M.G., Yu, S., Leff, J., Guan, Z., Braz, J.M., and Basbaum, A.I. (2020). Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264, https://doi.org/10.1038/s41467-019-13839-2.Suche in Google Scholar PubMed PubMed Central

Zhang, T.T., Xue, R., Fan, S.Y., Fan, Q.Y., An, L., Li, J., Zhu, L., Ran, Y.H., Zhang, L.M., Zhong, B.H., et al.. (2018). Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J. Neuroinflammation 15, 176, https://doi.org/10.1186/s12974-018-1216-3.Suche in Google Scholar PubMed PubMed Central

Zhang, T.T., Xue, R., Zhu, L., Li, J., Fan, Q.Y., Zhong, B.H., Li, Y.F., Ye, C.Y., and Zhang, Y.Z. (2016). Evaluation of the analgesic effects of ammoxetine, a novel potent serotonin and norepinephrine reuptake inhibitor. Acta Pharmacol. Sin. 37, 1154–1165, https://doi.org/10.1038/aps.2016.45.Suche in Google Scholar PubMed PubMed Central

Zhang, X., Chen, Y., Wang, C., and Huang, L.Y. (2007). Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc. Natl. Acad. Sci. U. S. A. 104, 9864–9869, https://doi.org/10.1073/pnas.0611048104.Suche in Google Scholar PubMed PubMed Central

Zychowska, M., Rojewska, E., Makuch, W., Przewlocka, B., and Mika, J. (2015). The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. Eur. J. Pharmacol. 749, 115–123, https://doi.org/10.1016/j.ejphar.2014.11.022.Suche in Google Scholar PubMed

Published Online: 2022-03-24
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/nf-2021-0036/pdf
Button zum nach oben scrollen