Home Epigenetic function in neurodevelopment and cognitive impairment
Article
Licensed
Unlicensed Requires Authentication

Epigenetic function in neurodevelopment and cognitive impairment

  • Mira Jakovcevski

    Mira Jakovcevski is a senior scientist, currently working in the Department of Functional Epigenetics in the Animal Model (head: Prof. Dr. Geraldine Zimmer-Bensch) at the RWTH Aachen University. Prior to this position, she trained in prestigious neuroscience and neuroepigenetics labs, including the Schachner lab (ZMNH, Hamburg), Akbarian lab (UMASS Medical School, MA; Mt. Sinai, NY), and in the Neurogenetics lab at the Max Planck Institute of Psychiatry (Munich). Dr. Jakovcevski is interested in understanding the molecular aspects of how behavior and gene expression interact with each other. Herein, she focuses on epigenetic mechanisms, as an important junction between these different biological processes and a mediator of environmental factors and the genetic make up.

    ORCID logo EMAIL logo
    and Geraldine Zimmer-Bensch

    Geraldine Zimmer-Bensch is a distinguished Professor of Neuroepigenetics at the RWTH Aachen University, Germany. Since the beginning of her academic career, starting at the Friedrich-Schiller University in Jena, Germany, she was fascinated by the brain and its formation. Following her postdoctoral training at the UFRJ in Rio de Janeiro, Brazil, she became the head of the “Neuroepigenetics” research group at the University Hospital Jena (UKJ), before being appointed as a Professor at the RWTH Aachen University. Being an independent PI at the UKJ, she focused on the identification of epigenetic regulatory networks, which direct discrete neurodevelopmental processes. Her ultimate goal is to dissect causes for neurodevelopment defects and hence, the pathophysiology of associated diseases.

    ORCID logo EMAIL logo
Published/Copyright: December 21, 2021
Become an author with De Gruyter Brill

Abstract

Brain development comprises a fine-tuned ensemble of molecular processes that need to be orchestrated in a very coordinated way throughout time and space. A wide array of epigenetic mechanisms, ranging from DNA methylation and histone modifications to noncoding RNAs, have been identified for their major role in guiding developmental processes such as progenitor proliferation, neuronal migration, and differentiation through precise regulation of gene expression programs. The importance of epigenetic processes during development is reflected by the high prevalence of neurodevelopmental diseases which are caused by a lack or mutation of genes encoding for transcription factors and other epigenetic regulators. Most of these factors process central functions for proper brain development, and respective mutations lead to severe cognitive defects. A better understanding of epigenetic programs during development might open new routes toward better treatment options for related diseases.

Zusammenfassung

Die Gehirnentwicklung basiert auf zeitlich und räumlich fein aufeinander abgestimmten Entwicklungsprozessen, wie Proliferation neuronaler Vorläuferzellen, deren Migration und Differenzierung. Die diesen Vorgängen zu Grunde liegenden Genexpressionsprogramme werden durch epigenetische Mechanismen wie DNA-Methylierung, Histonmodifikationen und nicht-kodierenden RNAs gesteuert und moduliert. Diverse Neuroentwicklungskrankheiten beruhen auf dem Verlust oder der Mutation von Genen, die für epigenetische Regulatoren kodieren, wodurch die Relevanz epigenetischer Transkriptionskontrolle für die Gehirnentwicklung verdeutlicht wird. Viele dieser Faktoren regulieren kritische Aspekte der neuronalen Entwicklung, was erklärt, warum entsprechende Mutationen zu schwerwiegenden kognitiven Defiziten führen können. Daher kann ein besseres Verständnis von epigenetischen Regulationsnetzwerken neuronaler Entwicklungsprozesse neue Wege zur Etablierung von verbesserten Therapiestrategien für assoziierte Erkrankungen eröffnen.


Corresponding authors: Mira Jakovcevski, Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany, E-mail: ; and Geraldine Zimmer-Bensch, Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany; and Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany, E-mail:

Award Identifier / Grant number: 368482240/GRK2416DFG

Award Identifier / Grant number: DFG ZI1224/13-1

About the authors

Mira Jakovcevski

Mira Jakovcevski is a senior scientist, currently working in the Department of Functional Epigenetics in the Animal Model (head: Prof. Dr. Geraldine Zimmer-Bensch) at the RWTH Aachen University. Prior to this position, she trained in prestigious neuroscience and neuroepigenetics labs, including the Schachner lab (ZMNH, Hamburg), Akbarian lab (UMASS Medical School, MA; Mt. Sinai, NY), and in the Neurogenetics lab at the Max Planck Institute of Psychiatry (Munich). Dr. Jakovcevski is interested in understanding the molecular aspects of how behavior and gene expression interact with each other. Herein, she focuses on epigenetic mechanisms, as an important junction between these different biological processes and a mediator of environmental factors and the genetic make up.

Geraldine Zimmer-Bensch

Geraldine Zimmer-Bensch is a distinguished Professor of Neuroepigenetics at the RWTH Aachen University, Germany. Since the beginning of her academic career, starting at the Friedrich-Schiller University in Jena, Germany, she was fascinated by the brain and its formation. Following her postdoctoral training at the UFRJ in Rio de Janeiro, Brazil, she became the head of the “Neuroepigenetics” research group at the University Hospital Jena (UKJ), before being appointed as a Professor at the RWTH Aachen University. Being an independent PI at the UKJ, she focused on the identification of epigenetic regulatory networks, which direct discrete neurodevelopmental processes. Her ultimate goal is to dissect causes for neurodevelopment defects and hence, the pathophysiology of associated diseases.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 368482240/GRK2416DFG; DFG ZI1224/13-1 (both assigned to GZB).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Albert, M., Kalebic, N., Florio, M., Lakshmanaperumal, N., Haffner, C., Brandl, H., Henry, I., and Huttner, W.B. (2017). Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J. 36, 2642–2658, https://doi.org/10.15252/embj.201796764.Search in Google Scholar PubMed PubMed Central

Albrecht, A., Segal, M., and Stork, O. (2020). Allostatic gene regulation of inhibitory synaptic factors in the rat ventral hippocampus in a juvenile/adult stress model of psychopathology. Eur. J. Neurosci. (Epub ahead of print).10.1111/EJN.15091/v2/response1Search in Google Scholar

Arcila, M.L., Betizeau, M., Cambronne, X.A., Guzman, E., Doerflinger, N., Bouhallier, F., Zhou, H., Wu, B., Rani, N., Bassett, D.S., et al.. (2014). Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns. Neuron 81, 1255–1262, https://doi.org/10.1016/j.neuron.2014.01.017.Search in Google Scholar PubMed PubMed Central

Baizabal, J.M., Mistry, M., García, M.T., Gómez, N., Olukoya, O., Tran, D., Johnson, M.B., Walsh, C.A., and Harwell, C.C. (2018). The epigenetic state of PRDM16-regulated enhancers in radial glia controls cortical neuron position. Neuron 98, 945–962.e8, https://doi.org/10.1016/j.neuron.2018.04.033.Search in Google Scholar PubMed PubMed Central

Barca-Mayo, O. and De PietriTonelli, D. (2014). Convergent microRNA actions coordinate neocortical development. Cell. Mol. Life Sci. 71, 2975–95, https://doi.org/10.1007/s00018-014-1576-5.Search in Google Scholar PubMed PubMed Central

Barkovich, A.J., Guerrini, R., Kuzniecky, R.I., Jackson, G.D., and Dobyns, W.B. (2012). A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–69, https://doi.org/10.1093/brain/aws019.Search in Google Scholar PubMed PubMed Central

Birkhoff, J.C., Huylebroeck, D., and Conidi, A. (2021). ZEB2, the Mowat-Wilson syndrome transcription factor: confirmations, novel functions, and continuing surprises. Genes (Basel) 12, 1037, doi:https://doi.org/10.3390/genes12071037.Search in Google Scholar PubMed PubMed Central

Bortone, D. and Polleux, F. (2009). KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62, 53–71, https://doi.org/10.1016/j.neuron.2009.01.034.Search in Google Scholar PubMed PubMed Central

Büttner, N., Johnsen, S.A., Kügler, S., and Vogel, T. (2010). Af9/Mllt3 interferes with Tbr1 expression through epigenetic modification of histone H3K79 during development of the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 7042–7.10.1073/pnas.0912041107Search in Google Scholar PubMed PubMed Central

Cai, S., Lee, C.C., and Kohwi-Shigematsu, T. (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1278–88, https://doi.org/10.1038/ng1913.Search in Google Scholar PubMed

Cedar, H. and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304, https://doi.org/10.1038/nrg2540.Search in Google Scholar PubMed

Close, J., Xu, H., De Marco García, N., Batista-Brito, R., Rossignol, E., Rudy, B., and Fishell, G. (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J. Neurosci. 32, 17690–705, https://doi.org/10.1523/jneurosci.3583-12.2012.Search in Google Scholar PubMed PubMed Central

De Marco García, N.V., Karayannis, T., and Fishell, G. (2011). Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature 472, 351–5.10.1038/nature09865Search in Google Scholar PubMed PubMed Central

den Hoed, J., de Boer, E., Voisin, N., Dingemans, A.J., Guex, N., Wiel, L., Nellaker, C., Amudhavalli, S.M., Banka, S., Bena, F.S., et al.. (2021). Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am. J. Hum. Genet. 108, 346–356, https://doi.org/10.1016/j.ajhg.2021.01.007.Search in Google Scholar PubMed PubMed Central

Denaxa, M., Kalaitzidou, M., Garefalaki, A., Achimastou, A., Lasrado, R., Maes, T., and Pachnis, V. (2012). Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Rep. 2, 1351–62, https://doi.org/10.1016/j.celrep.2012.10.003.Search in Google Scholar PubMed PubMed Central

Deussing, J.M. and Jakovcevski, M. (2017). Histone modifications in major depressive disorder and related rodent models. Adv. Exp. Med. Biol. 978, 169–183, https://doi.org/10.1007/978-3-319-53889-1_9.Search in Google Scholar PubMed

Du, T., Xu, Q., Ocbina, P.J., and Anderson, S.A. (2008). NKX2.1 specifies cortical interneuron fate by activating Lhx6. Development 135, 1559–67, https://doi.org/10.1242/dev.015123.Search in Google Scholar PubMed

Fan, G., Martinowich, K., Chin, M.H., He, F., Fouse, S.D., Hutnick, L., Hattori, D., Ge, W., Shen, Y., Wu, H., et al.. (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–56, https://doi.org/10.1242/dev.01912.Search in Google Scholar PubMed

Ferrari, F., Arrigoni, L., Franz, H., Izzo, A., Butenko, L., Trompouki, E., Vogel, T., and Manke, T. (2020). DOT1L-mediated murine neuronal differentiation associates with H3K79me2 accumulation and preserves SOX2-enhancer accessibility. Nat. Commun. 11, 5200, https://doi.org/10.1038/s41467-020-19001-7.Search in Google Scholar PubMed PubMed Central

Franz, H., Villarreal, A., Heidrich, S., Videm, P., Kilpert, F., Mestres, I., Calegari, F., Backofen, R., Manke, T., and Vogel, T. (2019). DOT1L promotes progenitor proliferation and primes neuronal layer identity in the developing cerebral cortex. Nucleic Acids Res. 47, 168–183, https://doi.org/10.1093/nar/gky953.Search in Google Scholar PubMed PubMed Central

Friocourt, G. and Parnavelas, J.G. (2011). Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation. Front. Cell. Neurosci. 5, 28, https://doi.org/10.3389/fncel.2011.00028.Search in Google Scholar PubMed PubMed Central

Gangfuß, A., Yigit, G., Altmüller, J., Nürnberg, P., Czeschik, J.C., Wollnik, B., Bögershausen, N., Burfeind, P., Wieczorek, D., Kaiser, F., et al.. (2021). Intellectual disability associated with craniofacial dysmorphism, cleft palate, and congenital heart defect due to a de novo MEIS2 mutation: a clinical longitudinal study. Am. J. Med. Genet. A 185, 1216–1221, https://doi.org/10.1002/ajmg.a.62070.Search in Google Scholar PubMed

Gelman, D.M. and Marín, O. (2010). Generation of interneuron diversity in the mouse cerebral cortex. Eur. J. Neurosci. 31, 2136–2141, https://doi.org/10.1111/j.1460-9568.2010.07267.x.Search in Google Scholar PubMed

Gelman, D.M., Martini, F.J., Nóbrega-Pereira, S., Pierani, A., Kessaris, N., and Marín, O. (2009). The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J. Neurosci. 29, 9380–9, https://doi.org/10.1523/jneurosci.0604-09.2009.Search in Google Scholar PubMed PubMed Central

Georgala, P.A., Carr, C.B., and Price, D.J. (2011). The role of Pax6 in forebrain development. Dev. Neurobiol. 71, 690–709, https://doi.org/10.1002/dneu.20895.Search in Google Scholar PubMed

Gerstmann, K. and Zimmer, G. (2018). The role of the Eph/ephrin family during cortical development and cerebral malformations. Arch. Med. Res. 6.Search in Google Scholar

Geschwind, D.H. and Rakic, P. (2013). Cortical evolution: judge the brain by its cover. Neuron 80, 633–647, https://doi.org/10.1016/j.neuron.2013.10.045.Search in Google Scholar PubMed PubMed Central

Gibson, W.T., Hood, R.L., Zhan, S.H., Bulman, D.E., Fejes, A.P., Moore, R., Mungall, A.J., Eydoux, P., Babul-Hirji, R., An, J., et al.. (2012). Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet. 90, 110–8, https://doi.org/10.1016/j.ajhg.2011.11.018.Search in Google Scholar PubMed PubMed Central

Gleeson, J.G. (2001). Neuronal migration disorders. Ment. Retard. Dev. Disabil. Res. Rev. 7, 167–71, https://doi.org/10.1002/mrdd.1024.Search in Google Scholar PubMed

Greenberg, M.V.C. and Bourc’his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607, https://doi.org/10.1038/s41580-019-0159-6.Search in Google Scholar PubMed

Guo, J. and Anton, E.S. (2014). Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol. 24, 342–51, https://doi.org/10.1016/j.tcb.2013.12.001.Search in Google Scholar PubMed PubMed Central

Hatanaka, Y., Zhu, Y., Torigoe, M., Kita, Y., and Murakami, F. (2016). From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 92, 1–19, https://doi.org/10.2183/pjab.92.1.Search in Google Scholar PubMed PubMed Central

He, F., Wu, H., Zhou, L., Lin, Q., Cheng, Y., and Sun, Y.E. (2020). Tet2-mediated epigenetic drive for astrocyte differentiation from embryonic neural stem cells. Cell Death Dis. 6, 30, https://doi.org/10.1038/s41420-020-0264-5.Search in Google Scholar PubMed PubMed Central

Hill, R.E., Favor, J., Hogan, B.L., Ton, C.C., Saunders, G.F., Hanson, I.M., Prosser, J., Jordan, T., and Hastie, N.D. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–5, https://doi.org/10.1038/354522a0.Search in Google Scholar PubMed

Hirabayashi, Y., Suzki, N., Tsuboi, M., Endo, T.A., Toyoda, T., Shinga, J., Koseki, H., Vidal, M., and Gotoh, Y. (2009). Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–13, https://doi.org/10.1016/j.neuron.2009.08.021.Search in Google Scholar PubMed

Hiroi, A., Yamamoto, T., Shibata, N., Osawa, M., and Kobayashi, M. (2011). Roles of fukutin, the gene responsible for fukuyama-type congenital muscular dystrophy, in neurons: possible involvement in synaptic function and neuronal migration. Acta Histochem. Cytoc. 44, 91–101, https://doi.org/10.1267/ahc.10045.Search in Google Scholar PubMed PubMed Central

Hutnick, L.K., Golshani, P., Namihira, M., Xue, Z., Matynia, A., Yang, X.W., Silva, A.J., Schweizer, F.E., and Fan, G. (2009). DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum. Mol. Genet. 18, 2875–2888, https://doi.org/10.1093/hmg/ddp222.Search in Google Scholar PubMed PubMed Central

Inamura, N., Kimura, T., Tada, S., Kurahashi, T., Yanagida, M., Yanagawa, Y., Ikenaka, K., and Murakami, F. (2012). Intrinsic and extrinsic mechanisms control the termination of cortical interneuron migration. J. Neurosci. 32, 6032–6042, https://doi.org/10.1523/jneurosci.3446-11.2012.Search in Google Scholar

Ishii, K., Kubo, K.I., and Nakajima, K. (2016). Reelin and neuropsychiatric disorders. Front. Cell. Neurosci. 10, 229, https://doi.org/10.3389/fncel.2016.00229.Search in Google Scholar PubMed PubMed Central

Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303, https://doi.org/10.1126/science.1210597.Search in Google Scholar PubMed PubMed Central

Jaitner, C., et al.. (2016). Satb2 determines miRNA expression and long-term memory in the adult central nervous system. Elife 5, https://doi.org/10.7554/eLife.17361.Search in Google Scholar PubMed PubMed Central

Jakovcevski, M., and Akbarian, S. (2012). Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–204, https://doi.org/10.1038/nm.2828.Search in Google Scholar PubMed PubMed Central

Jakovcevski, M., Reddy, C., Abentung, A., Whittle, N., Rieder, D., Delekate, A., Korte, M., Jain, G., Fischer, A., Sananbenesi, F., et al.. (2015). Neuronal Kmt2a/Mll1 histone methyltransferase is essential for prefrontal synaptic plasticity and working memory. J. Neurosci. 35, 5097–5108, https://doi.org/10.1523/jneurosci.3004-14.2015.Search in Google Scholar

Javier-Torrent, M., Zimmer-Bensch, G., and Nguyen, L. (2021). Mechanical forces orchestrate brain development. Trends Neurosci. 44, 110–121, https://doi.org/10.1016/j.tins.2020.10.012.Search in Google Scholar PubMed

Jiang, X., Liu, B., Nie, Z., Duan, L., Xiong, Q., Jin, Z., Yang, C., and Chen, Y. (2021). The role of m6A modification in the biological functions and diseases. Signal Transduct. Target Ther. 6, 74, https://doi.org/10.1038/s41392-020-00450-x.Search in Google Scholar PubMed PubMed Central

Jiang, Y., Loh, Y.H.E., Rajarajan, P., Hirayama, T., Liao, W., Kassim, B.S., Javidfar, B., Hartley, B.J., Kleofas, L., Park, R.B., et al.. (2017). The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain. Nat. Genet. 49, 1239–1250, https://doi.org/10.1038/ng.3906.Search in Google Scholar PubMed PubMed Central

Jung, E.M., Moffat, J.J., Liu, J., Dravid, S.M., Gurumurthy, C.B., and Kim, W.Y. (2017). Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat. Neurosci. 20, 1694–1707, https://doi.org/10.1038/s41593-017-0013-0.Search in Google Scholar PubMed PubMed Central

Kaas, G.A., Zhong, C., Eason, D.E., Ross, D.L., Vachhani, R.V., Ming, G.-L., King, J.R., Song, H., and Sweatt, J.D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 79, 1086–1093, https://doi.org/10.1016/j.neuron.2013.08.032.Search in Google Scholar PubMed PubMed Central

Klengel, T. and Binder, E.B. (2015). Epigenetics of stress-related psychiatric disorders and gene × environment interactions. Neuron 86, 1343–1357, https://doi.org/10.1016/j.neuron.2015.05.036.Search in Google Scholar PubMed

Kohli, R.M. and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472, https://doi.org/10.1038/nature12750.Search in Google Scholar PubMed PubMed Central

Korb, E., Herre, M., Zucker-Scharff, I., Gresack, J., Allis, C.D., and Darnell, R.B. (2017). Excess translation of epigenetic regulators contributes to fragile X syndrome and is alleviated by Brd4 inhibition. Cell 170, 1209–1223.e20, https://doi.org/10.1016/j.cell.2017.07.033.Search in Google Scholar PubMed PubMed Central

Lister, R., Mukamel, E.A., Nery, J.R., Urich, M., Puddifoot, C.A., Johnson, N.D., Lucero, J., Huang, Y., Dwork, A.J., Schultz, M.D., et al.. (2013). Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905, https://doi.org/10.1126/science.1237905.Search in Google Scholar PubMed PubMed Central

Li, X., Wei, W., Zhao, Q.-Y., Widagdo, J., Baker-Andresen, D., Flavell, C.R., D’Alessio, A., Zhang, Y., and Bredy, T.W. (2014). Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. Proc. Natl. Acad. Sci. U.S.A. 111, 7120–7125, https://doi.org/10.1073/pnas.1318906111.Search in Google Scholar PubMed PubMed Central

Magno, L., Barry, C., Schmidt-Hieber, C., Theodotou, P., Häusser, M., and Kessaris, N. (2017). NKX2-1 is required in the embryonic septum for cholinergic system development, learning, and memory. Cell Rep. 20, 1572–1584, https://doi.org/10.1016/j.celrep.2017.07.053.Search in Google Scholar PubMed PubMed Central

Mahjani, B., De Rubeis, S., Gustavsson Mahjani, C., Mulhern, M., Xu, X., Klei, L., Satterstrom, F.K., Fu, J., Talkowski, M.E., Reichenberg, A., et al.. (2021). Prevalence and phenotypic impact of rare potentially damaging variants in autism spectrum disorder. Mol. Autism. 12, 65, https://doi.org/10.1186/s13229-021-00465-3.Search in Google Scholar PubMed PubMed Central

Marín, O., Plump, A.S., Flames, N., Sánchez-Camacho, C., Tessier-Lavigne, M., and Rubenstein, J.L. (2003). Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development 130, 1889–901.10.1242/dev.00417Search in Google Scholar PubMed

Marín, O., Valiente, M., Ge, X., and Tsai, L.H. (2010). Guiding neuronal cell migrations. Cold Spring Harb. Perspect. Biol. 2, a001834, https://doi.org/10.1101/cshperspect.a001834.Search in Google Scholar PubMed PubMed Central

Matsuki, T., Chen, J., and Howell, B.W. (2013). Acute inactivation of the serine-threonine kinase Stk25 disrupts neuronal migration. Neural Dev. 8, 21, https://doi.org/10.1186/1749-8104-8-21.Search in Google Scholar PubMed PubMed Central

Maynard, T.M., Sikich, L., Lieberman, J.A., and LaMantia, A.S. (2001). Neural Development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr. Bull. 27, 457–476, https://doi.org/10.1093/oxfordjournals.schbul.a006887.Search in Google Scholar PubMed

Maze, I., Noh, K.M., Soshnev, A.A., and Allis, C.D. (2014). Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat. Rev. Genet. 15, 259–271, https://doi.org/10.1038/nrg3673.Search in Google Scholar PubMed PubMed Central

Maze, I., Wenderski, W., Noh, K.M., Bagot, R.C., Tzavaras, N., Purushothaman, I., Elsässer, S.J., Guo, Y., Ionete, C., Hurd, Y.L., et al.. (2015). Critical role of histone turnover in neuronal transcription and plasticity. Neuron 87, 77–94, https://doi.org/10.1016/j.neuron.2015.06.014.Search in Google Scholar PubMed PubMed Central

Meadows, J.P., Guzman-Karlsson, M.C., Phillips, S., Brown, J.A., Strange, S.K., Sweatt, J.D., and Hablitz, J.J. (2016). Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Sci. Signal. 9, ra83, https://doi.org/10.1126/scisignal.aaf5642.Search in Google Scholar PubMed PubMed Central

Mercer, T.R., Qureshi, I.A., Gokhan, S., Dinger, M.E., Li, G., Mattick, J.S., and Mehler, M.F. (2010). Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11, 14, https://doi.org/10.1186/1471-2202-11-14.Search in Google Scholar PubMed PubMed Central

Merkurjev, D., Hong, W.T., Iida, K., Oomoto, I., Goldie, B.J., Yamaguti, H., Ohara, T., Kawaguchi, S.Y., Hirano, T., Martin, K.C. and Pellegrini, M. (2018). Synaptic N 6-methyladenosine (m 6 A) epitranscriptome reveals functional partitioning of localized transcripts. Nat. Neurosci. 21, 1004–1014, https://doi.org/10.1038/s41593-018-0173-6.Search in Google Scholar PubMed

Miller, F.D. and Gauthier, A.S. (2007). Timing is everything: making neurons versus glia in the developing cortex. Neuron 54, 357–69, https://doi.org/10.1016/j.neuron.2007.04.019.Search in Google Scholar PubMed

Miyoshi, G., Butt, S.J., Takebayashi, H., and Fishell, G. (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798, https://doi.org/10.1523/jneurosci.1807-07.2007.Search in Google Scholar PubMed PubMed Central

Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., and Belforte, J.E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62, 1574–1583, https://doi.org/10.1016/j.neuropharm.2011.01.022.Search in Google Scholar PubMed PubMed Central

Nóbrega-Pereira, S., Kessaris, N., Du, T., Kimura, S., Anderson, S.A., and Marín, O. (2008). Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59, 733–45, https://doi.org/10.1016/j.neuron.2008.07.024.Search in Google Scholar PubMed PubMed Central

Noguchi, H., Murao, N., Kimura, A., Matsuda, T., Namihira, M., and Nakashima, K. (2016). DNA methyltransferase 1 is indispensable for development of the hippocampal dentate gyrus. J. Neurosci. 36, 6050–68, https://doi.org/10.1523/jneurosci.0512-16.2016.Search in Google Scholar

Peleg, S., Sananbenesi, F., Zovoilis, A., Burkhardt, S., Bahari-Javan, S., Agis-Balboa, R.C., Cota, P., Wittnam, J.L., Gogol-Doering, A., Opitz, L., et al.. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756, https://doi.org/10.1126/science.1186088.Search in Google Scholar PubMed

Pensold, D., Symmank, J., Hahn, A., Lingner, T., Salinas-Riester, G., Downie, B.R., Ludewig, F., Rotzsch, A., Haag, N., Andreas, N., et al.. (2017). The DNA methyltransferase 1 (DNMT1) controls the shape and dynamics of migrating POA-derived interneurons fated for the murine cerebral cortex. Cerebr. Cortex 27, 5696–5714, https://doi.org/10.1093/cercor/bhw341.Search in Google Scholar PubMed

Pereira, J.D., Sansom, S.N., Smith, J., Dobenecker, M.W., Tarakhovsky, A., and Livesey, F.J. (2010). Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 15957–62, https://doi.org/10.1073/pnas.1002530107.Search in Google Scholar

Rajman, M. and Schratt, G. (2017). MicroRNAs in neural development: from master regulators to fine-tuners. Development 144, 2310–2322, https://doi.org/10.1242/dev.144337.Search in Google Scholar

Reichard, J. and Zimmer-Bensch, G. (2021). The epigenome in neurodevelopmental disorders. Front. Neurosci., 15, 776809, https://doi.org/10.3389/fnins.2021.776809.Search in Google Scholar

Ronan, J.L., Wu, W., and Crabtree, G.R. (2013). From Neural development to cognition: unexpected roles for chromatin. Nat. Rev. Genet. 14, 347–359, https://doi.org/10.1038/nrg3413.Search in Google Scholar

Sandberg, M., Flandin, P., Silberberg, S., Su-Feher, L., Price, J.D., Hu, J.S., Kim, C., Visel, A., Nord, A.S., and Rubenstein, J.L. (2016). Transcriptional networks controlled by NKX2-1 in the development of forebrain GABAergic neurons. Neuron 91, 1260–1275, https://doi.org/10.1016/j.neuron.2016.08.020.Search in Google Scholar

Santoro, S.W. and Dulac, C. (2015). Histone variants and cellular plasticity. Trends Genet. 31, 516–527, https://doi.org/10.1016/j.tig.2015.07.005.Search in Google Scholar

Santos-Terra, J., Deckmann, I., Fontes-Dutra, M., Schwingel, G.B., Bambini-Junior, V., and Gottfried, C. (2021). Transcription factors in neurodevelopmental and associated psychiatric disorders: a potential convergence for genetic and environmental risk factors. Int. J. Dev. Neurosci 81, 545–578.10.1002/jdn.10141Search in Google Scholar

Schuurmans, C. and Guillemot, F. (2002). Molecular mechanisms underlying cell fate specification in the developing telencephalon. Curr. Opin. Neurobiol. 12, 26–34, https://doi.org/10.1016/s0959-4388(02)00286-6.Search in Google Scholar

Sharma, A., Klein, S.S., Barboza, L., Lohdi, N., and Toth, M. (2016). Principles governing DNA methylation during neuronal lineage and subtype specification. J. Neurosci. 36, 1711–1722, https://doi.org/10.1523/jneurosci.4037-15.2016.Search in Google Scholar

Shibata, M., Gulden, F.O., and Sestan, N. (2015). From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet. 31, 77–87, https://doi.org/10.1016/j.tig.2014.12.004.Search in Google Scholar PubMed PubMed Central

Shimazaki, T. and Okano, H. (2016). Heterochronic microRNAs in temporal specification of neural stem cells: application toward rejuvenation. NPJ Aging Mech. Dis. 2, 15014, https://doi.org/10.1038/npjamd.2015.14.Search in Google Scholar PubMed PubMed Central

Sokpor, G., Kerimoglu, C., Nguyen, H., Pham, L., Rosenbusch, J., Wagener, R., Nguyen, H.P., Fischer, A., Staiger, J.F., and Tuoc, T. (2021). Loss of BAF complex in developing cortex perturbs radial neuronal migration in a WNT signaling-dependent manner. Front. Mol. Neurosci. 14, 687581, https://doi.org/10.3389/fnmol.2021.687581.Search in Google Scholar PubMed PubMed Central

Sotoodeh, M.S. and Taheri-Torbati, H. (2021). A point-light display model for teaching motor skills to children with autism spectrum disorder: an eye-tracking study. Percept. Mot. Skills 128, 1485–1503, https://doi.org/10.1177/00315125211016814.Search in Google Scholar PubMed

Southwell, D.G., Paredes, M.F., Galvao, R.P., Jones, D.L., Froemke, R.C., Sebe, J.Y., Alfaro-Cervello, C., Tang, Y., Garcia-Verdugo, J.M., Rubenstein, J.L., et al.. (2012). Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–13, https://doi.org/10.1038/nature11523.Search in Google Scholar PubMed PubMed Central

Sparmann, A., Xie, Y., Verhoeven, E., Vermeulen, M., Lancini, C., Gargiulo, G., Hulsman, D., Mann, M., Knoblich, J.A., and Van Lohuizen, M. (2013). The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 32, 1598–1612, https://doi.org/10.1038/emboj.2013.93.Search in Google Scholar PubMed PubMed Central

Stryjewska, A., Dries, R., Pieters, T., Verstappen, G., Conidi, A., Coddens, K., Francis, A., Umans, L., van Ijcken, W.F., Berx, G., et al.. (2017). Zeb2 regulates cell fate at the exit from epiblast state in mouse embryonic stem cells. Stem Cell. 35, 611–625, https://doi.org/10.1002/stem.2521.Search in Google Scholar PubMed PubMed Central

Subramanian, L., Calcagnotto, M.E., and Paredes, M.F. (2019). Cortical malformations: lessons in human brain development. Front. Cell. Neurosci. 13, 576, https://doi.org/10.3389/fncel.2019.00576.Search in Google Scholar PubMed PubMed Central

Symmank, J., Bayer, C., Reichard, J., Pensold, D., and Zimmer-Bensch, G. (2020). Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Neuronal. Epigenet. 15, 1259–1274, https://doi.org/10.1080/15592294.2020.1767372.Search in Google Scholar PubMed PubMed Central

Symmank, J., Bayer, C., Schmidt, C., Hahn, A., Pensold, D., and Zimmer-Bensch, G. (2018). DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics 13, 536–556, https://doi.org/10.1080/15592294.2018.1475980.Search in Google Scholar PubMed PubMed Central

Tanaka, D.H. and Nakajima, K. (2012). GABAergic interneuron migration and the evolution of the neocortex. Dev. Growth Differ. 54, 366–72, https://doi.org/10.1111/j.1440-169x.2012.01351.x.Search in Google Scholar

Tuncdemir, S.N., Fishell, G., and Batista-Brito, R. (2015). miRNAs are essential for the survival and maturation of cortical interneurons. Cerebr. Cortex 25, 1842–1857, https://doi.org/10.1093/cercor/bht426.Search in Google Scholar PubMed PubMed Central

Udagawa, T., Farny, N.G., Jakovcevski, M., Kaphzan, H., Alarcon, J.M., Anilkumar, S., Ivshina, M., Hurt, J.A., Nagaoka, K., Nalavadi, V.C., et al.. (2013). Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat. Med. 19, 1473–1477, https://doi.org/10.1038/nm.3353.Search in Google Scholar PubMed PubMed Central

Usui, D., Shimada, S., Shimojima, K., Sugawara, M., Kawasaki, H., Shigematu, H., Takahashi, Y., Inoue, Y., Imai, K., and Yamamoto, T. (2013). Interstitial duplication of 2q32.1-q33.3 in a patient with epilepsy, developmental delay, and autistic behavior. Am. J. Med. Genet. A 161A, 1078–1084, https://doi.org/10.1002/ajmg.a.35679.Search in Google Scholar PubMed

Valcanis, H. and Tan, S.S. (2003). Layer specification of transplanted interneurons in developing mouse neocortex. J. Neurosci. 23, 5113–5122, https://doi.org/10.1523/jneurosci.23-12-05113.2003.Search in Google Scholar

Vance, K.W., Sansom, S.N., Lee, S., Chalei, V., Kong, L., Cooper, S.E., Oliver, P.L., and Ponting, C.P. (2014). The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 33, 296–311, https://doi.org/10.1002/embj.201386225.Search in Google Scholar PubMed PubMed Central

Vogt, D., Hunt, R.F., Mandal, S., Sandberg, M., Silberberg, S.N., Nagasawa, T., Yang, Z., Baraban, S.C., and Rubenstein, J.L. (2014). Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 82, 350–64, https://doi.org/10.1016/j.neuron.2014.02.030.Search in Google Scholar PubMed PubMed Central

Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R.J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G., et al.. (2018). N 6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nat. Neurosci. 21, 195–206.10.1038/s41593-017-0057-1Search in Google Scholar PubMed PubMed Central

Wieczorek, D., Bögershausen, N., Beleggia, F., Steiner-Haldenstätt, S., Pohl, E., Li, Y., Milz, E., Martin, M., Thiele, H., Altmüller, J., et al.. (2013). A comprehensive molecular study on Coffin-Siris and Nicolaides-Baraitser syndromes identifies a broad molecular and clinical spectrum converging on altered chromatin remodeling. Hum. Mol. Genet. 22, 5121–5135, https://doi.org/10.1093/hmg/ddt366.Search in Google Scholar PubMed

Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Abdellaoui, A., Adams, M.J., Agerbo, E., Air, T.M., Andlauer, T.M., et al.. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681, https://doi.org/10.1038/s41588-018-0090-3.Search in Google Scholar PubMed PubMed Central

Wu, X., Inoue, A., Suzuki, T., and Zhang, Y. (2017). Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev. 31, 511–523, https://doi.org/10.1101/gad.294843.116.Search in Google Scholar PubMed PubMed Central

Wu, X. and Zhang, Y. (2017). TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18 517, https://doi.org/10.1038/nrg.2017.33.Search in Google Scholar PubMed

Yang, S., Seo, H., Wang, M., and Arnsten, A.F.T. (2021). NMDAR neurotransmission needed for persistent neuronal firing: potential roles in mental disorders. Front. Psychiatr. 12, 654322, https://doi.org/10.3389/fpsyt.2021.654322.Search in Google Scholar PubMed PubMed Central

Yang, Y.J., Baltus, A.E., Mathew, R.S., Murphy, E.A., Evrony, G.D., Gonzalez, D.M., Wang, E.P., Marshall-Walker, C.A., Barry, B.J., Murn, J., et al.. (2012). Microcephaly gene links trithorax and REST/NRSF to control neural stem cell proliferation and differentiation. Cell 151, 1097–112, https://doi.org/10.1016/j.cell.2012.10.043.Search in Google Scholar PubMed PubMed Central

Ye, Z., Mostajo-Radji, M.A., Brown, J.R., Rouaux, C., Tomassy, G.S., Hensch, T.K., and Arlotta, P. (2015). Instructing perisomatic inhibition by direct lineage reprogramming of neocortical projection neurons. Neuron 88, 475–483, https://doi.org/10.1016/j.neuron.2015.10.006.Search in Google Scholar PubMed PubMed Central

Yoon, K.J., Ringeling, F.R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., Su, Y., Kim, N.S., Zhu, Y., Zheng, L., et al.. (2017). Temporal control of mammalian cortical neurogenesis by m. Cell 171, 877–889.e17, https://doi.org/10.1016/j.cell.2017.09.003.Search in Google Scholar PubMed PubMed Central

Ypsilanti, A.R. and Rubenstein, J.L. (2016). Transcriptional and epigenetic mechanisms of early cortical development: an examination of how Pax6 coordinates cortical development. J. Comp. Neurol. 524, 609–629, https://doi.org/10.1002/cne.23866.Search in Google Scholar PubMed PubMed Central

Zhang, Z., Li, N., Chen, R., Lee, T., Gao, Y., Yuan, Z., Nie, Y., and Sun, T. (2021). Prenatal stress leads to deficits in brain development, mood related behaviors and gut microbiota in offspring. Neurobiol. Stress 15, 100333, https://doi.org/10.1016/j.ynstr.2021.100333.Search in Google Scholar PubMed PubMed Central

Zhao, B.S., Roundtree, I.A., and He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18, 31–42, https://doi.org/10.1038/nrm.2016.132.Search in Google Scholar PubMed PubMed Central

Zhao, Y., Liu, H., Zhang, Q., and Zhang, Y. (2020). The functions of long non-coding RNAs in neural stem cell proliferation and differentiation. Cell Biosci. 10, 74, https://doi.org/10.1186/s13578-020-00435-x.Search in Google Scholar PubMed PubMed Central

Zimmer, G., Garcez, P., Rudolph, J., Niehage, R., Weth, F., Lent, R., and Bolz, J. (2008). Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur. J. Neurosci. 28, 62–73, https://doi.org/10.1111/j.1460-9568.2008.06320.x.Search in Google Scholar PubMed

Zimmer, G., Rudolph, J., Landmann, J., Gerstmann, K., Steinecke, A., Gampe, C., and Bolz, J. (2011). Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J. Neurosci. 31, 18364–18380, https://doi.org/10.1523/jneurosci.4690-11.2011.Search in Google Scholar PubMed PubMed Central

Zimmer-Bensch, G. (2018). Diverse facets of cortical interneuron migration regulation - implications of neuronal activity and epigenetics. Brain Res. 1700, 160–169, https://doi.org/10.1016/j.brainres.2018.09.001.Search in Google Scholar PubMed

Zimmer-Bensch, G. (2019). Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells 8, 1399, doi:https://doi.org/10.3390/cells8111399.Search in Google Scholar PubMed PubMed Central

Zimmer-Bensch, G. (2020). Epigenomic remodeling in Huntington’s disease - master or servant? Epigenomes 4, 15, https://doi.org/10.3390/epigenomes4030015.Search in Google Scholar PubMed PubMed Central

Published Online: 2021-12-21
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/nf-2021-0028/html
Scroll to top button