Abstract
Surface-enhanced circular dichroism (SECD) of chiral molecules adsorbed on plasmonic nanostructures can substantially enhance chiroptical molecular signals by several orders, which is otherwise very weak to be directly measured. Several mechanisms were proposed to explain this extreme enhancement, but the exact mechanism is still controversial. We investigate strong higher-order multipole contribution to SECD near plasmonic nanostructures using the superposition T-matrix method and discuss how 3-dimensional full-field simulations implementing a homogeneous chiral medium have succeeded in the reconstruction of the extreme enhancement. We also discuss how theoretical studies modeling chiral molecules based on dipole approximation have failed to reconstruct the extreme enhancement and show that SECD enhancement of such chiral dipoles is directly governed by optical chirality enhancement. In addition, strong multipolar transitions in subwavelength chiral plasmonic nanoparticles are discussed based on the T-matrix. This work reviews theoretical frameworks describing chiral molecules, demonstrates significant contribution of a multipolar transition on the extreme SECD enhancement near plasmonic nanostructures, and emphasizes the importance of a multipolar transition in chiral nearfield interaction.
1 Introduction
Surface-enhanced spectroscopic techniques utilizing plasmonic nanostructures have succeeded in the sensitive measurement of molecular signatures, and practical applications include surface-enhanced Raman spectroscopy where extreme enhancement up to single or few molecule levels has been demonstrated [1]. This surface enhancement scheme has also been applied to increase very weak intrinsic chiroptical signals of chiral molecules (CMs), which allows us to access extra information about handedness of CMs and structural conformation of biomolecules. This handedness information is particularly important in pharmaceutics, as well as synthetic chemistry, because drugs can act as medicine or poison depending on the handedness. Therefore, enantioselective sensing and sorting of CMs using light is actively researched for the nondestructive and rapid optical measurement and manipulation. Ultrasensitive chiral sensing of a minute amount of biomolecules using plasmonics was demonstrated [2], [3], [4] with enhancement up to 106 [5] and zeptomole-level sensitivity [6]. The mechanism of this extreme enhancement factor exceeding 103 is still controversial, because theoretical models could not explain such large enhancement [7]. In our opinion, one of the reasons why the theoretical study of surface-enhanced circular dichroism (SECD) and other chiral nearfield interactions has been difficult is that description of electromagnetic (EM)-chiral object itself (i.e. CM) is often too simplified. Higher-order multipole contribution cannot be ignored in nearfield interaction [8], [9] and has been suggested to explain SECD [2], [5]. However, theoretical studies have often neglected this contribution from field gradient possibly due to the complexity and calculation effort, which multipolar generalization requires [8], [9], and EM-chiral effects have usually been treated as interplay between electric dipole (E1) and magnetic dipole (M1) [10].
In this paper, we emphasize the role of higher-order multipole transitions in SECD and chiral nearfield interactions specifically near plasmonic nanostructures. First, we briefly review theoretical frameworks describing EM-chiral objects, and we use these methods to reconstruct SECD and understand its mechanism. We suggest dipole approximation as one possible reason for this discrepancy between theory and experiment. Finally, we demonstrate strong multipolarity of chiral plasmonic nanostructures. We believe this work will be helpful for theoretical analysis of chiral scattering processes near plasmonic nanostructures, which can be applied to optical forces and spectroscopy, enantiomeric separation using optical and enantiomeric spectroscopic sensing.
2 Theoretical frameworks describing chiral scatterers
First, we review theoretical frameworks describing CMs and small scatterers. EM chirality has been known to originate from the transition between E1 and M1 (E1–M1) and E1 and electric quadrupole (E2) modes (E1–E2), but E1–E2 contribution is often ignored because it disappears through orientation averaging [10]. At dipole regime, polarizability tensors are expressed as p/ε=αeE+iηαcH and m=αmH–iαcE/η, where p and m are induced electric and magnetic dipole moments, E and H are incident (external) electric and magnetic fields, and η and ε are wave impedance and permittivity of host medium. The EM-chiral property of a dipolar chiral polarizable element is expressed by the cross-polarizability term αc. Another popular description of the EM-chiral scattering system is a finite volume of the chiral medium with its constitutive relations [11] given as D=εE+ikH/c and B=μH–iκE/c, where κ, ε, and μ are the chirality parameter, permittivity, and permeability of the chiral medium, respectively, D is the electric displacement field, and B is the magnetic flux density. Such a system is equivalent to a random collection of CMs, so we will refer to this method as the effective medium approach (EMA).
The polarizability formalism has widely been used to describe small EM-chiral objects to conveniently express chiral scattering [12], [13], [14] and even chiral opto-mechanical processes, such as force and torque for optical trapping application [15], [16], [17], [18], [19], but we will show that this method fails to reconstruct a strong SECD enhancement factor because of the dipole approximation. On the other hand, EMA is not susceptible to the dipole approximation, but such a system may not be appropriate to describe one or few CMs, and we cannot distinguish contributions from different multipolar transitions. This description contains higher-order transition terms, which may or may not be relevant to the problem of interest depending on physical situation; that is, a random collection of CMs confined in a finite volume may be described using EMA, but this approach may not be appropriate to describe a coupling between a single CM and a nanoparticle (NP). Therefore, in this paper, we use the superposition T-matrix method to account for multiple scattering between NP and CM in a numerically exact manner; see Section S2 in Supplementary Material for more details.
3 Mechanisms of SECD
Several mechanisms have been proposed to explain the extreme enhancement of chiral signals from CMs adsorbed on plasmonic nanostructures; the proposed mechanisms include superchiral field [12], Coulomb interaction through nearfield enhancement [13], and radiative coupling [20], [21]. The optical chirality density (C) was recognized to be proportional to the excitation rate difference of CMs at opposite circularly polarized lights (CPLs) [12], where the time-averaged optical chirality density is C=(εμω/2)Im(E·H†) and † represents complex conjugate. This local field quantity of chirality density has brought many following works on superchiral field near nanostructures and possible enhancement of chiral interaction [21], [22], [23], [24], which assumed that the SECD enhancement factor (ESECD) is related to the optical chirality enhancement factor EC≡C/|CCPL|=ηIm(E·H†)/|ECPL|2. However, 〈EC〉 near plasmonic nanostructures is quite limited due to the quasistatic nature of small plasmonic nanostructures [25], where 〈·〉 is volume-averaged quantity. Large chiral plasmonic structures exhibited strong 〈EC〉 of ~102 [22], [26], but an intense chiral signal from the structures would overshadow a much weaker signal from CMs. Achiral high-index nanostructures have theoretically supported large 〈EC〉 up to ~102 [24], [27], [28]. However, to the best of our knowledge, ultrasensitive chiral sensing utilizing such high-index nanostructures has not been experimentally reported.
Radiative coupling occurs through the coherent exchange of photon between scattering objects, which act as a nanoantenna that can both receive and re-emit EM energy, and a CM placed near a nanoantenna can form a strongly coupled state [29]. Explanation based on the superchiral field focuses on dissipation in the CM only, whereas one based on coupling additionally considers perturbation to the nanoantenna. Recent reports suggest that backaction of CM on the NP may be a major factor of SECD effects [23], whose microscopic origin has been analyzed by decomposing the observed CD as induced CD of NP and inherent CD of CM. To distinguish and study the origin of SECD, we use two different ESECD definitions:
4 Higher-order multipole contribution to SECD
In this paper, we use isotropic dipole CM with its property originating from the E1–M1 transition (CME1−M1) with Lorentzian spectral lineshape (see Section S3 in Supplementary Material). Note that throughout this work, we do not consider the properties of a real molecule, but simplified artificial one, and achiral NP to discard CD from NP and effectively capture and describe the SECD effect only [23], [27], [30]; the host medium has n=1.33 for all configurations. The simplest configuration of a CME1−M1 near the Ag sphere successfully reconstructs SECD effects near plasmon resonance (Figure 1).
![Figure 1: SECD of CME1−M1 from a single Ag sphere. (A) Electric (EE=|E|2/|E0|2, black solid) and magnetic field enhancement (EH=|H|2/|H0|2, black dotted) and optical chirality enhancement EC (red solid) in the absence of CM. (B) CD enhancement factor of the NP-CM complex (ESECD) and CM alone (ESECDCM).$(E_{{\rm{SECD}}}^{{\rm{CM}}}).$The Ag sphere has a radius of 20 nm, and CM is located 5 nm away from the surface. Optical parameters of Ag were taken from [31].](/document/doi/10.1515/nanoph-2019-0046/asset/graphic/j_nanoph-2019-0046_fig_001.jpg)
SECD of CME1−M1 from a single Ag sphere. (A) Electric (EE=|E|2/|E0|2, black solid) and magnetic field enhancement (EH=|H|2/|H0|2, black dotted) and optical chirality enhancement EC (red solid) in the absence of CM. (B) CD enhancement factor of the NP-CM complex (ESECD) and CM alone
The simulated ESECD of ~102 (Figure 1B) is still far weaker than the experimentally observed enhancement of three to six orders [5], [20]. In the next section, we study SECD near a nanoantenna with strong field gradient to study multipolar contribution to SECD. We used dimer configurations that are designed to exhibit strong EC using M1 resonance from the E1 loop (Figure 2A) [21] and using hybridization of M1 (Figure 2D) [24]. The gap sizes were determined so that the maximum EC becomes ~10. CME1−M1 implemented inside Ag and Si dimer gap exhibited ESECD of ~102, and
![Figure 2: SECD of (B, E) CME1−M1 and (C, F) CME2−M2 from (A–C) Ag dimer and (D–F) Si dimer. (A, D) Electric (EE=|E|2/|E0|2, black solid) and magnetic field enhancement (EH=|H|2/|H0|2, black dotted) and optical chirality enhancement EC (red solid) in the center of the dimer gap in the absence of CM. ESECD (black) and ESECDCM$E_{{\rm{SECD}}}^{{\rm{CM}}}$ (red) of (B, E) CME1−M1 and (C, F) CME2−M2. Ag dimer has a radius of 30 nm and a gap distance of 6 nm, and Si dimer has a radius of 30 nm and a gap distance of 2 nm. Optical parameters of Si were taken from [33].](/document/doi/10.1515/nanoph-2019-0046/asset/graphic/j_nanoph-2019-0046_fig_002.jpg)
SECD of (B, E) CME1−M1 and (C, F) CME2−M2 from (A–C) Ag dimer and (D–F) Si dimer. (A, D) Electric (EE=|E|2/|E0|2, black solid) and magnetic field enhancement (EH=|H|2/|H0|2, black dotted) and optical chirality enhancement EC (red solid) in the center of the dimer gap in the absence of CM. ESECD (black) and
We used isotropic CM with the chiral property from the E2–M2 transition (CME2−M2) such that it has extinction and CD identical to CME1−M1 under planewave incidence. This property can be easily implemented using the T-matrix (see Section S2 in Supplementary Material). CME2−M2 embedded inside Ag dimer exhibited maximum ESECD of 5×105 (Figure 2C), which is ~103 times stronger than the one observed using CME1−M1 (Figure 2B). For the Si dimer case, ESECD also increased, but only up to ~600 (Figure 2F). This large enhancement difference between Ag and Si dimer cases may explain why SECD effects have been observed using plasmonic substrates.
ESECD of ~103 has been observed in EMA using numerical methods [34]. Such strong enhancement is possible, because EMA is not susceptible to dipole approximation. This approach can also be implemented using the T-matrix method to describe a chiral sphere or spherical chiral core shell (see Section S5 in Supplementary Material), and the higher-order transition can be treated to possibly take a non-negligible part in nearfield interaction. A spherical chiral core shell exhibits higher

SECD of a chiral medium near plasmonic nanostructure. ESECD (black) and
Recently, Wu et al. recognized that strong field gradient may also take part in SECD; only the field amplitude where the point dipole exists matters at dipole regime, but generally, scatterers can be excited by field gradient and even higher-order modes [14]. Previous analytic theories that relied on this dipole approximation to describe CMs [12], [13] could not capture large field gradient near plasmonic nanostructures. Therefore, we think that this higher-order transition may be a major factor in the SECD effects, and C is not a reliable field quantity to represent SECD, and the radiative coupling mechanism better describes the SECD effects. This perturbation to the nanoantenna should be critical for SECD to be practical, because achiral absorption of CM increases more dramatically near plasmonic NP compared to CD of CM due to larger field enhancement [35]. In addition, we relied on spherical dimers, but even stronger field gradient is expected from bowtie configuration due to its sharp tips and lightning-rod effect, which would allow even a stronger higher-order transition to be excited. Our finding is contrary to the recent finding that multipolar contribution in chiral nearfield is negligible and can be explained by local description using EMA [7], but their experimental condition was far from plasmonic resonance, where field gradient may have been negligible. In addition, E2 contribution was adopted to construct anisotropic constitutive relations for oriented CMs [36], [37]. It is also worth noting that chiroptical response originating from the interaction between optical angular momentum of twisted light and CM is cancelled out for CM with only the E1–M1 transition [38], but can survive for CM with the E1–E2 transition [39].
5 Plasmonic chiral scatterers
Strong chiral effects have been demonstrated from subwavelength plasmonic chiral NPs [40], [41], [42], which are possible candidates for chiral metamaterial-based optical devices [42], sensors [5], [6], and trapping and separation of CMs [17], [19]. In this section, we use the T-matrix to show that many plasmonic chiral systems involve a higher-order transition for their chiral properties. Twisted nanorods [41] and helical assembly [40] are two experimentally demonstrated plasmonic chiral systems. Although their sizes are subwavelength, their properties are not dipolar and contain higher-order transitions in a complicated manner (Figure 4A and B). Such systems are difficult to be described using polarizability tensor formalism, which is specialized in describing a dipolar system. Twisted nanorods exhibit chiral effects at
![Figure 4: Subwavelength plasmonic chiral scatterers with a higher-order transition. (A–C) Geometrical representation (inset), extinction (Σσ) and CD (left) of (A) twisted nanorods, (B) helical assembly, and (C) cNP, and their T-matrix (right) at (A) 790 nm, (B) 540 nm, and (C) 640 nm. Σσ (black) and CD (red) at k∥x^${\bf{k}}\parallel {\bf{\hat x}}$ (dashed), k∥y^${\bf{k}}\parallel {\bf{\hat y}}$ (dot-dashed), and k∥z^${\bf{k}}\parallel {\bf{\hat z}}$ (solid). Geometric parameters are: (A) twisted-nanorods with 5-nm radius, 25-nm gap, 38-nm length, and 50° twist angle; (B) helical assembly with 17-nm major radius, 5-nm minor radius, 56-nm pitch, and 1.5-turn; (C) cNP with 50-nm edge length, 5-nm gap width, 20-nm gap depth, and 60° gap angle. The optical parameters of the Au particles are taken from [31].](/document/doi/10.1515/nanoph-2019-0046/asset/graphic/j_nanoph-2019-0046_fig_004.jpg)
Subwavelength plasmonic chiral scatterers with a higher-order transition. (A–C) Geometrical representation (inset), extinction (Σσ) and CD (left) of (A) twisted nanorods, (B) helical assembly, and (C) cNP, and their T-matrix (right) at (A) 790 nm, (B) 540 nm, and (C) 640 nm. Σσ (black) and CD (red) at
6 Conclusion
In this paper, we emphasize the possible importance of a higher-order transition in SECD effects and chiral nearfield interaction. First, we reviewed and clarified description of EM-chiral objects. We confirmed that the optical chirality enhancement EC only directly governs the enhancement of inherent CD of chiral dipoles, and that inherent CD seems to take only a portion of total observed CD; therefore, EC may not be the standard to estimate SECD effects. We showed that a higher-order transition is critical for extreme SECD enhancement, which cannot be reproduced under dipole approximation. Due to the small size of CMs, it may be difficult to experimentally verify the results, but large biomolecules, such as protein and DNA, may have a non-negligible higher-order transition especially in nearfield. We only discussed particle systems due to the limitation in the methods, but we believe that important insights can be extended to different systems including periodic or particles on a substrate. We believe that enantiomeric sorting and sensing are actively researched areas, which may especially benefit from this work. Also, the general concept of this work to describe the EM properties of coupled scatterers using the coupled multipole method and T-matrix may be extended to non-reciprocal or active systems.
Acknowledgments
This work was financially supported from the National Research Foundation grants (NRF-2019R1A2C3003129, CAMM-2019M3A6B3030637, NRF-2018M3D1A1058998, NRF-2015R1A5A1037668) funded by the Ministry of Science and ICT (MSIT), Republic of Korea.
References
[1] Haynes CL, McFarland AD, Van Duyne RP. Surface-enhanced Raman spectroscopy. Anal Chem 2005;77:338A–46A.10.1021/ac053456dSuche in Google Scholar
[2] Tullius R, Karimullah AS, Rodier M, et al. “Superchiral” spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J Am Chem Soc 2015;137:8380–3.10.1021/jacs.5b04806Suche in Google Scholar PubMed
[3] Lu F, Tian Y, Liu M, et al. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett 2013;13:3145–51.10.1021/nl401107gSuche in Google Scholar PubMed
[4] García-Guirado J, Svedendahl M, Puigdollers J, Quidant R. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett 2018;18:6279–85.10.1021/acs.nanolett.8b02433Suche in Google Scholar PubMed
[5] Hendry E, Carpy T, Johnston J, et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 2010;5:783–7.10.1038/nnano.2010.209Suche in Google Scholar PubMed
[6] Zhao Y, Askarpour AN, Sun L, Shi J, Li X, Alu A. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 2017;8:14180.10.1038/ncomms14180Suche in Google Scholar PubMed PubMed Central
[7] Barr LE, Horsley SAR, Hooper IR, et al. Investigating the nature of chiral near-field interactions. Phys Rev B 2018;97:155418.10.1103/PhysRevB.97.155418Suche in Google Scholar
[8] Girard C, Dereux A. Near-field optics theories. Rep Prog Phys 1996;59:657.10.1088/0034-4885/59/5/002Suche in Google Scholar
[9] Chaumet PC, Rahmani A, Fornel F, de Dufour JP. Evanescent light scattering: the validity of the dipole approximation. Phys Rev B 1998;58:2310.10.1103/PhysRevB.58.2310Suche in Google Scholar
[10] Schäferling M. Chiral nanophotonics: chiral optical properties of plasmonic systems. Vol. 205. Switzerland: Springer International Publishing, 2017.10.1007/978-3-319-42264-0Suche in Google Scholar
[11] Lindell IV, Sihvola A, Tretyakov S, Viitanen A. Electromagnetic waves in chiral and bi-isotropic media. Boston, United States, Artech House, 1994.Suche in Google Scholar
[12] Tang Y, Cohen AE. Optical chirality and its interaction with matter. Phys Rev Lett 2010;104:163901.10.1103/PhysRevLett.104.163901Suche in Google Scholar PubMed
[13] Govorov AO, Fan Z, Hernandez P, Slocik JM, Naik RR. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 2010;10:1374–82.10.1021/nl100010vSuche in Google Scholar PubMed
[14] Wu T, Zhang W, Wang R, Zhang X. A giant chiroptical effect caused by the electric quadrupole. Nanoscale 2017;9:5110–8.10.1039/C6NR09419HSuche in Google Scholar PubMed
[15] Cameron RP, Barnett SM, Yao AM. Discriminatory optical force for chiral molecules. New J Phys 2014;16:013020.10.1088/1367-2630/16/1/013020Suche in Google Scholar
[16] Hayat A, Mueller JB, Capasso F. Lateral chirality-sorting optical forces. Proc Natl Acad Sci USA 2015;112:13190–4.10.1073/pnas.1516704112Suche in Google Scholar PubMed PubMed Central
[17] Zhao Y, Saleh AA, Dionne JA. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics 2016;3:304–9.10.1021/acsphotonics.5b00574Suche in Google Scholar
[18] Zhang T, Mahdy MRC, Liu Y, et al. All-optical chirality-sensitive sorting via reversible lateral forces in interference fields. ACS Nano 2017;11:4292–300.10.1021/acsnano.7b01428Suche in Google Scholar PubMed
[19] Canaguier-Durand A, Genet C. Plasmonic lateral forces on chiral spheres. J Optics 2015;18:015007.10.1088/2040-8978/18/1/015007Suche in Google Scholar
[20] Abdulrahman NA, Fan Z, Tonooka T, et al. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett 2012;12:977–83.10.1021/nl204055rSuche in Google Scholar PubMed
[21] Mun J, Rho J. Surface-enhanced circular dichroism by multipolar radiative coupling. Opt Lett 2018;43:2856–9.10.1364/OL.43.002856Suche in Google Scholar PubMed
[22] Schäferling M, Dregely D, Hentschel M, Giessen H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys Rev X 2012;2:031010.10.1103/PhysRevX.2.031010Suche in Google Scholar
[23] Lee S, Yoo S, Park QH. Microscopic origin of surface-enhanced circular dichroism. ACS Photonics 2017;4:2047–52.10.1021/acsphotonics.7b00479Suche in Google Scholar
[24] Yao K, Liu Y. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers. Nanoscale 2018;10:8779–86.10.1039/C8NR00902CSuche in Google Scholar PubMed
[25] Finazzi M, Biagioni P, Celebrano M, Duo L. Quasistatic limit for plasmon-enhanced optical chirality. Phys Rev B 2015;91:195427.10.1103/PhysRevB.91.195427Suche in Google Scholar
[26] Schäferling M, Yin X, Engheta N, Giessen H. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics 2014;1:530–7.10.1021/ph5000743Suche in Google Scholar
[27] García-Etxarri A, Dionne JA. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys Rev B 2013;87:235409.10.1103/PhysRevB.87.235409Suche in Google Scholar
[28] Solomon ML, Hu J, Lawrence M, García-Etxarri A, DionneJA. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 2019;6:43–9.10.1021/acsphotonics.8b01365Suche in Google Scholar
[29] Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Adv Opt Photonics 2009;1:438–83.10.1364/AOP.1.000438Suche in Google Scholar
[30] Schäferling M, Yin X, Giessen H. Formation of chiral fields in a symmetric environment. Opt Express 2012;20:26326–36.10.1364/OE.20.026326Suche in Google Scholar PubMed
[31] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B 1972;6:4370.10.1103/PhysRevB.6.4370Suche in Google Scholar
[32] Tang Y, Cohen AE. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011;332:333–6.10.1126/science.1202817Suche in Google Scholar PubMed
[33] Aspnes DE, Studna A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B 1983;27:985.10.1103/PhysRevB.27.985Suche in Google Scholar
[34] Nesterov ML, Yin X, Schäferling M, Giessen H, Weiss T. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 2016;3:578–83.10.1021/acsphotonics.5b00637Suche in Google Scholar
[35] Choi JS, Cho M. Limitations of a superchiral field. Phys Rev A 2012;86:063834.10.1103/PhysRevA.86.063834Suche in Google Scholar
[36] Theron IP, Cloete JH. The electric quadrupole contribution to the circular birefringence of nonmagnetic anisotropic chiral media: a circular waveguide experiment. IEEE Trans Microw Theory Tech 1996;44:1451–9.10.1109/22.536028Suche in Google Scholar
[37] Kelly C, Tullius R, Lapthorn AJ, et al. Chiral plasmonic fields probe structural order of biointerfaces. J Am Chem Soc 2018;140:8509–17.10.1021/jacs.8b03634Suche in Google Scholar PubMed PubMed Central
[38] Andrews DL, Romero LD, Babiker M. On optical vortex interactions with chiral matter. Opt Commun 2004;237:133–9.10.1016/j.optcom.2004.03.093Suche in Google Scholar
[39] Forbes KA, Andrews DL. Optical orbital angular momentum: twisted light and chirality. Opt Lett 2018;43:435–8.10.1364/OL.43.000435Suche in Google Scholar PubMed
[40] Kuzyk A, Schreiber R, Fan Z, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012;483:311.10.1038/nature10889Suche in Google Scholar PubMed
[41] Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N. Reconfigurable 3D plasmonic metamolecules. Nat Mater 2014;13:862.10.1038/nmat4031Suche in Google Scholar PubMed
[42] Lee H-E, Ahn H-Y, Mun J, et al. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018;556:360.10.1038/s41586-018-0034-1Suche in Google Scholar PubMed
[43] Bernal Arango F, Coenen T, Koenderink AF. Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval. ACS Photonics 2014;1:444–53.10.1021/ph5000133Suche in Google Scholar
[44] Fruhnert M, Fernandez-Corbaton I, Yannopapas V, RockstuhlC.Computing the T-matrix of a scattering object with multiple plane wave illuminations. Beilstein J Nanotechnol 2017;8:614.10.3762/bjnano.8.66Suche in Google Scholar PubMed PubMed Central
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/nanoph-2019-0046).
©2019 Junsuk Rho et al., published by De Gruyter, Berlin/Boston
This work is licensed under the Creative Commons Attribution 4.0 Public License.
Artikel in diesem Heft
- Review Articles
- Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory
- Gradient index phononic crystals and metamaterials
- Information metamaterials – from effective media to real-time information processing systems
- Nonradiating photonics with resonant dielectric nanostructures
- Single-photon sources with quantum dots in III–V nanowires
- Plasmon-enhanced solar vapor generation
- Research Articles
- Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral
- Topological plasmonic edge states in a planar array of metallic nanoparticles
- Laser-written colours on silver: optical effect of alumina coating
- Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber
- Vortex index identification and unidirectional propagation in Kagome photonic crystals
- A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator
- Low- and high-order nonlinear optical properties of Ag2S quantum dot thin films
- Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 μm
- Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification
- Quantitative analysis and modeling of line edge roughness in near-field lithography: toward high pattern quality in nanofabrication
- WDM-compatible multimode optical switching system-on-chip
- Solar-blind ultraviolet detection based on TiO2 nanoparticles decorated graphene field-effect transistors
- Measuring circular phase-dichroism of chiral metasurface
- Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach
- Tunable Brillouin and Raman microlasers using hybrid microbottle resonators
- Importance of higher-order multipole transitions on chiral nearfield interactions
Artikel in diesem Heft
- Review Articles
- Non-Markovian features in semiconductor quantum optics: quantifying the role of phonons in experiment and theory
- Gradient index phononic crystals and metamaterials
- Information metamaterials – from effective media to real-time information processing systems
- Nonradiating photonics with resonant dielectric nanostructures
- Single-photon sources with quantum dots in III–V nanowires
- Plasmon-enhanced solar vapor generation
- Research Articles
- Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral
- Topological plasmonic edge states in a planar array of metallic nanoparticles
- Laser-written colours on silver: optical effect of alumina coating
- Bismuth-based metamaterials: from narrowband reflective color filter to extremely broadband near perfect absorber
- Vortex index identification and unidirectional propagation in Kagome photonic crystals
- A compact structure for realizing Lorentzian, Fano, and electromagnetically induced transparency resonance lineshapes in a microring resonator
- Low- and high-order nonlinear optical properties of Ag2S quantum dot thin films
- Monolithic waveguide laser mode-locked by embedded Ag nanoparticles operating at 1 μm
- Fabrication of highly homogeneous and controllable nanogratings on silicon via chemical etching-assisted femtosecond laser modification
- Quantitative analysis and modeling of line edge roughness in near-field lithography: toward high pattern quality in nanofabrication
- WDM-compatible multimode optical switching system-on-chip
- Solar-blind ultraviolet detection based on TiO2 nanoparticles decorated graphene field-effect transistors
- Measuring circular phase-dichroism of chiral metasurface
- Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach
- Tunable Brillouin and Raman microlasers using hybrid microbottle resonators
- Importance of higher-order multipole transitions on chiral nearfield interactions