Home Mechanical behavior of AA5083/AA6061 friction stir welds using modal analysis
Article
Licensed
Unlicensed Requires Authentication

Mechanical behavior of AA5083/AA6061 friction stir welds using modal analysis

  • Emre Can Çavuş

    Emre Can Çavuş, born is 1991, graduated from Zonguldak Bulent Ecevit University, Department of Mechanical Engineering. His field of interests are microstructural characterization and friction stir welding.

    and Oğuz Koçar

    Dr. Oğuz Koçar, born is 1982, studied in the Mechanical Engineering Department at the Zonguldak Bulent Ecevit University, Turkey. He received his Ph.D. degree from the Sakarya University, Sakarya, Turkey. His field of interests are friction stir welding, CAM, sheet metal forming, machinability, adhesive bonding and equal channel annular pressing (ECAP).

    EMAIL logo
Published/Copyright: May 16, 2023
Become an author with De Gruyter Brill

Abstract

Solid-state joining is used for welding similar or dissimilar materials due to its many advantages like avoiding fusion and formation of a thick intermetallic layer, etc. Determination of the right process parameters (feed rate and rotation speed) and tool geometry (shoulder and pin) is of critical importance in friction stir welding in order to achieve adequate weld quality. The experiments were performed using three process parameters: feed rate (mm min−1), rotation speed (rpm) and pin geometry for friction stir welding of Al5083 and Al6061. Eighteen experiments were performed with different process parameters and mechanical tests (microhardness and tensile measurements) have been carried out to determine the weld quality. Results showed that the best results of ultimate strength (198.5 MPa) were achieved by the triangle pin geometry, 1250 rpm rotation speed and 100 mm min−1 feed rate. Similar results were observed in microhardness tests. Effects of tool geometry, feed rate, and rotation speed on the vibration properties and weld quality are also investigated experimentally. The effects of the FSW parameters used were assessed using vibration analysis.


Corresponding author: Oğuz Koçar, Karaelmas Universitesi Egitim ve Arastirma Hastanesi, Zonguldak, 67100, Türkiye, E-mail:

About the authors

Emre Can Çavuş

Emre Can Çavuş, born is 1991, graduated from Zonguldak Bulent Ecevit University, Department of Mechanical Engineering. His field of interests are microstructural characterization and friction stir welding.

Oğuz Koçar

Dr. Oğuz Koçar, born is 1982, studied in the Mechanical Engineering Department at the Zonguldak Bulent Ecevit University, Turkey. He received his Ph.D. degree from the Sakarya University, Sakarya, Turkey. His field of interests are friction stir welding, CAM, sheet metal forming, machinability, adhesive bonding and equal channel annular pressing (ECAP).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. Lakshminarayanan, V. Balasubramanian, and K. Elangovan, “Effect of welding processes on tensile properties of AA6061 aluminium alloy joints,” Int. J. Adv. Des. Manuf. Technol., vol. 59, pp. 286–296, 2009, https://doi.org/10.1007/s00170-007-1325-0.Search in Google Scholar

[2] M. Vigneshwar, S. Selvamani, P. Hariprasath, and K. Palanikumar, “Analysis of mechanical, metallurgical and fatigue behavior of friction welded AA6061-AA2024 dissimilar aluminum alloys in optimized condition,” Mater. Today: Proc., vol. 5, pp. 7853–7863, 2018, https://doi.org/10.1016/j.matpr.2017.11.466.Search in Google Scholar

[3] M. K. Besharati-Givi and P. Asadi, Advances in Friction-Stir Welding and Processing, 1nd ed. USA, Elsevier, 2014.10.1533/9780857094551.1Search in Google Scholar

[4] S. Çelik and I. Ersozlu, “Investigation of microstructure and mechanical properties of friction welded AISI 316 and CK 45 steels,” High Temp. Mater. Process., vol. 33, pp. 161–170, 2014, https://doi.org/10.1515/htmp-2013-0042.Search in Google Scholar

[5] T. DebRoy and H. Bhadeshia, “Friction stir welding of dissimilar alloys–a perspective,” Sci. Technol. Weld. Join., vol. 15, pp. 266–270, 2010, https://doi.org/10.1179/174329310X12726496072400.Search in Google Scholar

[6] O. Kocar, M. Yetmez, E. Baysal, and H. A. Ozyigit, “Mechanical behavior of a friction welded AA6013/AA7075 beam,” Mater. Test., vol. 64, pp. 284–293, 2022, https://doi.org/10.1515/mt-2021-2041.Search in Google Scholar

[7] C. Dawis and W. Thomas, “Friction stir process welds aluminum alloys: a new friction welding technique allows easy welding of normally difficult to join materials,” Weld. J., vol. 75, p. 41, 1996, https://doi.org/10.2464/jilm.50.166.Search in Google Scholar

[8] J.-H. Cho, D. E. Boyce, and P. R. Dawson, “Modeling strain hardening and texture evolution in friction stir welding of stainless steel,” Mater. Sci. Eng., A, vol. 398, pp. 146–163, 2005, https://doi.org/10.1016/j.msea.2005.03.002.Search in Google Scholar

[9] M. Shunmugasundaram, A. P. Kumar, L. P. Sankar, and S. Sivasankar, “Optimization of process parameters of friction stir welded dissimilar AA6063 and AA5052 aluminum alloys by Taguchi technique,” Mater. Today: Proc., vol. 27, pp. 871–876, 2020, https://doi.org/10.1016/j.matpr.2020.01.122.Search in Google Scholar

[10] E. Anawa and A.-G Olabi, “Optimization of tensile strength of ferritic/austenitic laser-welded components,” Opt Laser. Eng., vol. 46, pp. 571–577, 2008, https://doi.org/10.1016/j.optlaseng.2008.04.014.Search in Google Scholar

[11] Y. Xie, X. Meng, Y. Li, D. Mao, L. Wan, and Y. Huang, “Insight into ultra-refined grains of aluminum matrix composites via deformation-driven metallurgy,” Compos. Commun., vol. 26, p. 100776, 2021, https://doi.org/10.1016/j.coco.2021.100776.Search in Google Scholar

[12] H. Tagimalek, M. R. Maraki, M. Mahmoodi, H. K. Moghaddam, and S. Farzad-Rik, “Prediction of mechanical properties and hardness of friction stir welding of Al 5083/pure Cu using ANN, ICA and PSO model,” SN Appl. Sci., vol. 4, pp. 1–17, 2022, https://doi.org/10.1007/s42452-022-04989-y.Search in Google Scholar

[13] X. Meng, Y. Xie, X. Ma, et al.., “Towards friction stir remanufacturing of high-strength aluminum components,” Acta Metall. Sin. vol. 36, pp. 1–12, 2022, https://doi.org/10.1007/s40195-022-01444-0.Search in Google Scholar

[14] P. Kaushik and D. K. Dwivedi, “Effect of tool geometry in dissimilar Al-steel friction stir welding,” J. Manuf. Process., vol. 68, pp. 198–208, 2021, https://doi.org/10.1016/j.jmapro.2020.08.007.Search in Google Scholar

[15] H. Wang, K. Wang, W. Wang, L. Huang, P. Peng, and H. Yu, “Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel,” Mater. Char., vol. 155, p. 109803, 2009, https://doi.org/10.1016/j.matchar.2019.109803.Search in Google Scholar

[16] W. Zhang, Y. Mao, P. Yang, N. Li, L. Ke, and Y. Chen, “Effect of welding speed on microstructure evolution and mechanical properties of friction stir welded 2198 Al-Cu-Li alloy joints,” Materials, vol. 15, pp. 969–979, 2022, https://doi.org/10.3390/ma15030969.Search in Google Scholar PubMed PubMed Central

[17] M. Bilgin, Ş. Karabulut, and A. Özdemir, “Investigation of heat-assisted dissimilar friction stir welding of AA7075-T6 aluminum and AZ31B magnesium alloys,” Arabian J. Sci. Eng., vol. 45, pp. 1081–1095, 2019. https://doi.org/10.1007/s13369-019-04244-4.Search in Google Scholar

[18] V. Devuri, M. Mahapatra, S. Harsha, and N. Mandal, “Effect of shoulder surface dimension and geometries on FSW of AA7039,” J. Manuf. Sci. Prod., vol. 14, pp. 183–194, 2014, https://doi.org/10.1515/jmsp-2014-0008.Search in Google Scholar

[19] T. Sun, A. Reynolds, M. Roy, P. Withers, and P. Prangnell, “The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds,” Mater. Sci. Eng., A, vol. 735, pp. 218–227, 2017. https://doi.org/10.1515/jmsp-2014-0008.Search in Google Scholar

[20] N. Sharma, A. N. Siddiquee, Z. A. Khan, and M. T. Mohammed, “Material stirring during FSW of Al–Cu: effect of pin profile,” Mater. Manuf. Processes, vol. 33, pp. 786–794, 2018, https://doi.org/10.1080/10426914.2017.1388526.Search in Google Scholar

[21] P. S. Kumar and M. S. Chander, “Effect of tool pin geometry on FSW dissimilar aluminum alloys-(AA5083 & AA6061),” Mater. Today: Proc., vol. 39, pp. 472–477, 2021, https://doi.org/10.1016/j.matpr.2020.08.204.Search in Google Scholar

[22] D. B. Darmadi and M. Talice, “Improving the strength of friction stir welded joint by double side friction welding and varying pin geometry,” Sci. Technol. Eng. Int. J., vol. 24, pp. 637–647, 2021, https://doi.org/10.1016/j.jestch.2020.11.001.Search in Google Scholar

[23] N. R. J. Hynes and P. S. Velu, “Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints,” J. Manuf. Process., vol. 32, pp. 288–297, 2018, https://doi.org/10.1016/j.jmapro.2018.02.014.Search in Google Scholar

[24] H. Lombard, D. Hattingh, A. Steuwer, and M. James, “Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds,” Mater. Sci. Eng., A, vol. 501, pp. 119–124, 2009, https://doi.org/10.1016/j.msea.2008.09.078.Search in Google Scholar

[25] S. Rajakumar, C. Muralidharan, and V. Balasubramanian, “Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints,” Mater. Des., vol. 32, pp. 535–549, 2011, https://doi.org/10.1016/j.matdes.2010.08.025.Search in Google Scholar

[26] L. Zhou, G. Li, C. Liu, et al.., “Effect of rotation speed on microstructure and mechanical properties of self-reacting friction stir welded Al-Mg-Si alloy,” Int. J. Adv. Des. Manuf. Technol., vol. 89, pp. 3509–3516, 2016, https://doi.org/10.1007/s00170-016-9318-5.Search in Google Scholar

[27] K. Dehghani, R. Ghorbani, and A. Soltanipoor, “Microstructural evolution and mechanical properties during the friction stir welding of 7075-O aluminum alloy,” Int. J. Adv. Des. Manuf. Technol., vol. 77, pp. 1671–1679, 2015, https://doi.org/10.1007/s00170-014-6574-0.Search in Google Scholar

[28] W. Xu, Z. Li, and X. Sun, “Effect of welding speed on mechanical properties and the strain-hardening behavior of friction stir welded 7075 aluminum alloy joints,” J. Mater. Eng. Perform., vol. 26, pp. 1938–1946, 2017, https://doi.org/10.1007/s00170-014-6574-0.Search in Google Scholar

[29] M. Mahoney, C. Rhodes, J. Flintoff, W. Bingel, and R. Spurling, “Properties of friction-stir-welded 7075 T651 aluminum,” Metall. Mater. Trans., vol. 29, pp. 1955–1964, 1998, https://doi.org/10.1007/s11661-998-0021-5.Search in Google Scholar

[30] M. D. Sameer and A. K. Birru, “Selection of friction stir welding tool rotational speed for joining dual phase DP600 steel sheets–an experimental approach,” J. Adhes. Sci. Technol., vol. 35, pp. 751–776, 2021, https://doi.org/10.1080/01694243.2020.1826789.Search in Google Scholar

[31] J. Guo, H. Chen, C. Sun, G. Bi, Z. Sun and J. Wei, “Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters,” Mater. Des., vol. 56, pp. 185–192, 2014, https://doi.org/10.1016/j.matdes.2013.10.082.Search in Google Scholar

[32] K. J. Quintana and J. L. L. Silveira, “Analysis for the forces in FSW for aluminum alloy considering tool geometry and process velocities,” J. Braz. Soc. Mech. Sci. Eng., vol. 40, pp. 1–11, 2018, https://doi.org/10.1007/s40430-018-1162-0.Search in Google Scholar

[33] M. M. Hasan, M. Ishak, and M. Rejab, “Effect of backing material and clamping system on the tensile strength of dissimilar AA7075-AA2024 friction stir welds,” Int. J. Adv. Des. Manuf. Technol., vol. 91, pp. 3991–4007, 2017, https://doi.org/10.1007/s00170-017-0033-7.Search in Google Scholar

[34] R. Palanivel, R. Laubscher, I. Dinaharan, and N. Murugan, “Tensile strength prediction of dissimilar friction stir-welded AA6351–AA5083 using artificial neural network technique,” J. Braz. Soc. Mech. Sci. Eng., vol. 38, pp. 1647–1657, 2018, https://doi.org/10.1007/s40430-015-0483-5.Search in Google Scholar

[35] V. V. Patel, V. Badheka, and A. Kumar, “Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy,” J. Mater. Process. Technol., vol. 240, pp. 68–76, 2017, https://doi.org/10.1016/j.jmatprotec.2016.09.009.Search in Google Scholar

[36] N. Z. Khan, A. N. Siddiquee, Z. A. Khan, and S. K. Shihab, “Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys,” J. Alloys Compd., vol. 648, pp. 360–367, 2015, https://doi.org/10.1016/j.jallcom.2015.06.246.Search in Google Scholar

[37] Y. Mao, L. Ke, F. Liu, Q. Liu, C. Huang, and L. Xing, “Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate,” Mater. Des., vol. 62, pp. 334–343, 2014, https://doi.org/10.1016/j.matdes.2014.05.038.Search in Google Scholar

[38] M. Sameer and A. K. Birru, “Effect of tool tilt angles on mechanical and microstructural properties of friction stir welding of dissimilar dual-phase 600 steel and aa6082-T6 aluminum alloy,” SAE Int. J. Mater. Manuf., vol. 14, pp. 45–62, 2021, https://d oi:10.4271/05-14-01-0005.10.4271/05-14-01-0005Search in Google Scholar

[39] M. Kimura, K. Suzuki, M. Kusaka, and K. Kaizu, “Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminium alloy and AISI 304 stainless steel,” J. Manuf. Process., vol. 26, pp. 178–187, 2017, https://doi.org/10.1016/j.jmapro.2017.02.008.Search in Google Scholar

[40] C. Jawalkar and S. Kant, “A review on use of aluminium alloys in aircraft components,” i-Manager’s J. Mater. Sci., vol. 3, pp. 33–42, 2015, https://doi.org/10.26634/jms.3.3.3673.Search in Google Scholar

[41] E. Taban and E. Kaluc, “Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083-H321 aluminium alloy,” Kovove Mater., vol. 44, p. 25, 2006, https://doi.org/10.31577/km.2006.44.1.Search in Google Scholar

[42] M. N. F. Hilmy, S. F. Muzammil, Z. Hussain, A. T. A. Ebenezer, and A. A. Seman, “Parametric optimization of friction stir welding of dissimilar Al 5083 and Al 6061 alloys by using Taguchi method,” Proc. AIP Conf. Proc., vol. 2267, p. 020071 1-10, 2020, https://doi.org/10.1063/5.0015725.Search in Google Scholar

[43] X. Meng, Y. Huang, J. Cao, J. Shen, and J. F. dos Santos, “Recent progress on control strategies for inherent issues in friction stir welding,” Prog. Mater. Sci., vol. 115, 2021, Art. no. 100706, https://doi.org/10.1016/j.pmatsci.2020.100706.Search in Google Scholar

[44] R. Anand and V. Sridhar, “Studies on process parameters and tool geometry selecting aspects of friction stir welding–a review,” Mater. Today: Proc., vol. 27, pp. 576–583, 2020, https://doi.org/10.1016/j.matpr.2019.12.042.Search in Google Scholar

[45] Y. Zhang, X. Cao, S. Larose, and P. Wanjara, “Review of tools for friction stir welding and processing,” Can. Metall. Q., vol. 51, pp. 250–261, 2012, https://doi.org/10.1179/1879139512Y.0000000015.Search in Google Scholar

[46] N. Bhardwaj, R. G. Narayanan, U. Dixit, and M. Hashmi, “Recent developments in friction stir welding and resulting industrial practices,” Adv. Mater. Proc. Technol., vol. 5, pp. 461–496, 2016, https://doi.org/10.1080/2374068X.2019.1631065.Search in Google Scholar

[47] D. K. Thirumalaikkannan, K. Dhamothara, S. Paramasivam, S. Murugesan, and B. Visvalingam, “Effect of rotational speed on the microstructure and mechanical properties of rotary friction welded AISI 1018/AISI 1020 asymmetrical joints,” Mater. Test., vol. 64, pp. 1561–1571, 2022, https://doi.org/10.1515/mt-2022-0188.Search in Google Scholar

[48] L. Gong, T. Liu, and W. Guo, “Hydrothermal and cerium salt sealing of a 6061 aluminum alloy,” Mater. Test., vol. 64, pp. 1553–1560, 2022, https://doi.org/10.1515/mt-2022-0030.Search in Google Scholar

[49] H. Lin, L. Shao, L. Lv, and T. Jin, “Measurement of the deformation and strain of AZ31B magnesium alloy under quasi-static complex loading,” Mater. Test., vol. 64, pp. 1597–1605, 2022, https://doi.org/10.1515/mt-2022-0132.Search in Google Scholar

[50] M. Bakkiyaraj, A. K. Lakshminarayanan, S. Yuvaraj, and P. K. Nagarajan, “Effect of friction time on tensile strength and metallurgical properties of friction welded dissimilar aluminum alloy joints,” Mater. Test., vol. 63, pp. 1097–1103, 2021, https://doi.org/10.1515/mt-2021-0049.Search in Google Scholar

[51] W. Su and H. M. Zhu, “Multiaxial fatigue behavior of a 2198-T8 Al–Li alloy under proportional and nonproportional loading,” Mater. Test., vol. 64, pp. 1572–1585, 2022, https://doi.org/10.1515/mt-2022-0172.Search in Google Scholar

[52] P. Topuz, “Microstructure of a chrome-boriding of induction hardened DIN Ck 45 steel,” Mater. Test., vol. 64, pp. 1645–1650, 2022, https://doi.org/10.1515/mt-2022-0007.Search in Google Scholar

[53] I. Akkurt, “Effective atomic numbers for Fe–Mn alloy using transmission experiment,” Chinese Phys. Lett., vol. 24, p. 2812, 2007, https://doi.org/10.1088/0256-307X/24/10/027.Search in Google Scholar

[54] T. Caymaz, S. Çalışkan, and A. R. Botsalı, “Evaluation of ergonomic conditions using fuzzy logic in a metal processing plant,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 1, pp. 19–24, 2022, https://doi.org/10.22399/ijcesen.932994.Search in Google Scholar

[55] H. Arbouz, “Modeling of a tandem solar cell structure based on CZTS and CZTSe absorber materials,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 1, pp. 14–18, 2022, https://doi.org/10.22399/ijcesen.843038.Search in Google Scholar

[56] K. Gunoglu, H. Varol Özkavak, and İ. Akkurt, “Hatice Varol Özkavak, İskender Akkurt “Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: experimental, XCOM and Phy-X/PSD database software”,” Mater. Today Commun., vol. 29, 2021, Art. no. 102793, https://doi.org/10.1016/j.mtcomm.2021.102793.Search in Google Scholar

[57] C. Karaca and H. Oturak, “Experimental analysis of two different heating systems using copper pipe and carbon steel pipe in shell and tube heat exchanger,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 3, pp. 65–68, 2022, https://doi.org/10.22399/ijcesen.1087883.Search in Google Scholar

[58] I. Akkurt “Effective atomic and electron numbers of some steels at different energies,” Ann. Nucl. En., vol. 36, nos. 11–12, pp. 1702–1705, 2009, https://doi.org/10.1016/j.anucene.2009.09.005.Search in Google Scholar

[59] Q. A. A. D. Rwashdı, F. Waheed, K. Gunoglu, and İ. Akkurt, “Experimental testing of the radiation shielding properties for steel,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 3, pp. 74–76, 2022, https://doi.org/10.22399/ijcesen.1067028.Search in Google Scholar

[60] R. Karaali and A. Keven, “Evaluation of four different cogeneration cycles by using some criteria,” Appl. Rheol., vol. 32, no. 1, pp. 122–137, 2022, https://doi.org/10.1515/arh-2022-0128.Search in Google Scholar

[61] C. O. Gökçe, V. Durusu, and R. Unal, “Disturbance rejection performance comparison of PSO and ZN methods for various disturbance frequencies,” Int. J. Comput. Exp. Sci. Eng., vol. 9, no. 1, pp. 17–19, 2023, https://doi.org/10.22399/ijcesen.1202255.Search in Google Scholar

[62] A. Keven, “Exergy analyses of vehicles air conditioning systems for different refrigerants,” Int. J. Comput. Exp. Sci. Eng., vol. 9, no. 1, pp. 20–28, 2023, https://doi.org/10.22399/ijcesen.1258770.Search in Google Scholar

[63] S. Bouchareb, R. Tigrine, and S. Fetah, “Vibrational wave scattering in disordered ultra-thin film with integrated nanostructures,” Appl. Rheol., vol. 33, no. 1, p. 20220135, 2023, https://doi.org/10.1515/arh-2022-0135.Search in Google Scholar

[64] Ö. Yakut, “Diabetes prediction using colab notebook based machine learning methods,” Int. J. Comput. Exp. Sci. Eng., vol. 9, no. 1, pp. 36–41, 2023, https://doi.org/10.22399/ijcesen.1185474.Search in Google Scholar

[65] A. Ural and Z. H. Kilimci, “The prediction of chiral metamaterial resonance using convolutional neural networks and conventional machine learning algorithms,” Int. J. Comput. Exp. Sci. Eng., vol. 7, no. 3, pp. 156–163, 2021, https://doi.org/10.22399/ijcesen.973726.Search in Google Scholar

[66] M. Atasbak, A. Keven, and R. Karaali, “Exergy analyses of two and three stage cryogenic cycles,” Appl. Rheol., vol. 32, no. 1, pp. 190–204, 2022, https://doi.org/10.1515/arh-2022-0134.Search in Google Scholar

[67] A. Çilli, M. Beken, and N. Kurt, “Determination of theoretical fracture criteria of layered elastic composite material by ANFIS method from artificial intelligence,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 2, pp. 32–39, 2022, https://doi.org/10.22399/ijcesen.1077328.Search in Google Scholar

[68] F. Waheed, M. İmamoğlu, N. Karpuz, and H. Ovalıoğlu, “Simulation of neutrons shielding properties for some medical materials,” Int. J. Comput. Exp. Sci. Eng., vol. 8, no. 1, pp. 5–8, 2022, https://doi.org/10.22399/ijcesen.1032359.Search in Google Scholar

[69] H. Arbouz, “Optimization of lead-free CsSnI3-based perovskite solar cell structure,” Appl. Rheol., vol. 33, no. 1, p. 20220138, 2023, https://doi.org/10.1515/arh-2022-0138.Search in Google Scholar

[70] R. Boodaghi Malidarre, İ. K. Akkurt, K. Gunoglu, and H. Akyıldırım, “Fast neutrons shielding properties for HAP-Fe2O3 composite materials,” Int. J. Comput. Exp. Sci. Eng., vol. 7, no. 3, pp. 143–145, 2021, https://doi.org/10.22399/ijcesen.1012039.Search in Google Scholar

[71] D. Şen Baykal, H. Tekin, and R. Çakırlı Mutlu, “An investigation on radiation shielding properties of borosilicate glass systems,” Int. J. Comput. Exp. Sci. Eng., vol. 7, no. 2, pp. 99–108, 2021, https://doi.org/10.22399/ijcesen.960151.Search in Google Scholar

Published Online: 2023-05-16
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0446/html
Scroll to top button