Home A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems
Article
Licensed
Unlicensed Requires Authentication

A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems

  • Ali Rıza Yıldız

    Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and the topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems and Journal of Computational Design and Engineering.

    EMAIL logo
    and Mehmet Umut Erdaş

    Mehmet Umut Erdaş received his Bsc degree from Department of Automotive Engineering at Uludag University. He is currently a Ph.d. Student in the same department.

Published/Copyright: February 23, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, a new hybrid Taguchi salp swarm algorithm (HTSSA) has been developed to speed up the optimization processes of structural design problems in industry and to approach a global optimum solution. The design problem is posed for the shape optimization of a seat bracket with a mass objective function and a stress constraint. Objective function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations necessary for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm and, Harris hawks optimization algorithm are used to compare the performance of the HTSSA in solving the structural design problem. The results show the hybrid Taguchi salp swarm algorithm’s ability and the superiority of the method developed for optimum product design processes.


Bursa Uludağ University Department of Automotive Engineering, Görükle, Bursa, 16059, Turkey

About the authors

Dr. Ali Rıza Yıldız

Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and the topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems and Journal of Computational Design and Engineering.

Mehmet Umut Erdaş

Mehmet Umut Erdaş received his Bsc degree from Department of Automotive Engineering at Uludag University. He is currently a Ph.d. Student in the same department.

Acknowledgment

The first author gratefully acknowledges the support provided by the Bursa Uludag University Scientific Research Projects Center (BAP) under Grant Nos. BUAP(MH)-2019/2.

References

1 S. Mirjalili: SCA: A sine cosine algorithm for solving optimization problems, Knowledge Based System 96 (2016), pp. 120-133 DOI:10.1016/j.knosys.2015.12.02210.1016/j.knosys.2015.12.022Search in Google Scholar

2 S. Saremi, S. Mirjalili, A. Lewis: Grasshopper optimisation algorithm: theory and application, Advances in Engineering Software 105 (2017), pp. 30-47 DOI:10.1016/j.advengsoft.2017.01.00410.1016/j.advengsoft.2017.01.004Search in Google Scholar

3 S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software 114 (2017), pp. 163-191 DOI:10.1016/j.advengsoft.2017.07.00210.1016/j.advengsoft.2017.07.002Search in Google Scholar

4 S. Mirjalili, A. Lewis: The whale optimization algorithm, Advances in Engineering Software 95 (2016) pp. 51-67 DOI:10.1016/j.advengsoft.2016.01.0010.1016/j.advengsoft.2016.01.00Search in Google Scholar

5 P. Champasak, N.Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle, Aerospace Science and Technology 100 (2020), pp. 1-11 DOI:10.1016/j.ast.2020.10578310.1016/j.ast.2020.105783Search in Google Scholar

6 A. Heidari, S. Mirjalili, H. Farris, I. Aljarah, M. Mafarja, H. Chen: Harris hawks optimization: Algorithm and applications, Future Generation Computer Systems 97 (2019), pp. 849-872 DOI:10.1016/j.future.2019.02.02810.1016/j.future.2019.02.028Search in Google Scholar

7 A. R. Yildiz: Designing of optimum vehicle components using new generation optimization methods, Journal of Polytechnic 20 (2017), No. 2, pp. 319-323 DOI:10.2339/2017.20.2 325-33210.2339/2017.20.2 325-332Search in Google Scholar

8 A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili: Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Systems 191 (2020), pp. 105190 DOI:10.1016/j.knosys.2019.10519010.1016/j.knosys.2019.105190Search in Google Scholar

9 B. S. Yildiz, A. R. Yildiz: Comparison of grey wolf, whale, water cycle optimization algorithm, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing 60 (2018), No. 3, pp. 311-315 DOI:10.3139/120.11115310.3139/120.111153Search in Google Scholar

10 B. S. Yildiz, A. R. Yildiz: The Harris hawks optimization algorithm, salp swarm optimization algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components, Materials Testing 61 (2019), No. 8, pp. 744-748 DOI:10.3139/120.11137910.3139/120.111379Search in Google Scholar

11 Y. Zhou, K. Saitou: Gradient-based multi-component topology optimization for stamped sheet metal assemblies (MTO-S), Structural and Multidisciplinary Optimization 58 (2018), pp 83-94 DOI:10.1007/s00158-017-1878-y10.1007/s00158-017-1878-ySearch in Google Scholar

12 A. R. Yildiz, B. S. Yildiz, S. M. Sait, X. Y. Li: The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations, Materials Testing 61 (2019), pp. 725-733 DOI:10.3139/120.11137710.3139/120.111377Search in Google Scholar

13 B. S. Yıldız: The spotted hyena optimization algorithm for weight-reduction of automobile brake components, Materials Testing 62 (2020), No. 4, pp. 383-388 DOI:10.3139/120.11149510.3139/120.111495Search in Google Scholar

14 B. S. Yıldız, A. R. Yildiz, E. I. Albak, H. Abderazek, Sadiq M. Sait, S. Bureerat: Butterfly optimization algorithm for optimum shape design of automobile suspension components, Materials Testing 62 (2020), No. 4, pp. 365-370 DOI:10.3139/120.11149210.3139/120.111492Search in Google Scholar

15 B. S. Yıldız: Optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology, Materials Testing, 62 (2020), No. 4, pp. 372-377 DOI:10.3139/120.11149410.3139/120.111494Search in Google Scholar

16 B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait, V. Patel: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components. Materials Testing 62 (2020), No. 3, pp. 261-264 DOI:10.3139/120.11147910.3139/120.111479Search in Google Scholar

17 E. Kurtuluş, A. R. Yildiz, S. Bureerat, Sadiq M. Sait: A novel hybrid Harris hawks- simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails, Materials Testing 62 (2020), No. 3, pp. 251-260 DOI:10.3139/120.11147810.3139/120.111478Search in Google Scholar

18 T. Kunakote, S. Bureerat: Multi-objective topology optimization using evolutionary algorithms, Engineering Optimization 43 (2011), No. 5, pp. 541-557 DOI:10.1080/0305215X.2010.50293510.1080/0305215X.2010.502935Search in Google Scholar

19 A. R. Yildiz: A new hybrid bee colony optimization approach for robust optimal design and manufacturing, Applied Soft Computing 13 (2013), No. 5, pp. 2906-2912 DOI:10.1016/j.asoc.2012.04.01310.1016/j.asoc.2012.04.013Search in Google Scholar

20 H. Özkaya, M. Yildiz, A. R. Yildiz, S. Bureerat, B. S. Yildiz, Sadiq M. Sait: The equilibrium optimization algorithm and the response surface based metamodel for optimal structural design of vehicle components, Materials Testing 62 (2020), pp. 492-496 DOI:10.3139/120.11150910.3139/120.111509Search in Google Scholar

21 D. Guirguis, K. Hamza, M. Aly, H. Hegazi, K. Saitou:Multi-Objective Topology Optimization of Multi-Component Continuum Structures via a Kriging-interpolated Level-Set Approach, Structural and Multidisciplinary Optimization 51 (2015), No. 3, pp. 733-748 DOI:10.1007/s00158-014-1154-310.1007/s00158-014-1154-3Search in Google Scholar

22 T. Güler, A. Demirci, A. R. Yıldız, U. Yavuz: Lightweight design of an automobile hinge component using glass fiber polyamide composites, Materials Testing 60 (2018), No. 3, pp. 306-310 DOI:10.3139/120.11115210.3139/120.111152Search in Google Scholar

23 F. Hamza, H. Abderazek, S. Lakhdar, D. Ferhat, A. R. Yildiz: Optimum design of cam-roller follower mechanism using a new evolutionary algorithm, The International Journal of Advanced Manufacturing Technology 99 (2018), No. 5-8, pp. 1261-1282 DOI:10.1007/s00170-018-2543-310.1007/s00170-018-2543-3Search in Google Scholar

24 G. I. Sayed, A. Tharwat, A. E. Hassanien, Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection, Applied Intelligence 49 (2019), pp. 188-205 DOI:10.1007/s10489-018-1261-8.10.1007/s10489-018-1261-8Search in Google Scholar

25 B. S. Yildiz: The mine blast algorithm for the structural optimization of electrical vehicle components, Materials Testing 62 (2020), No. 5, pp. 497-501 DOI:10.3139/120.11151110.3139/120.111511Search in Google Scholar

26 A. R. Yildiz, N. Kaya, N. Öztürk, F. Öztürk: Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry, International Journal of Production Research 44 (2006), pp. 4897-4914 DOI:10.1080/0020754060061993210.1080/00207540600619932Search in Google Scholar

27 B. S. Yildiz: A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems, International Journal of Vehicle Design 73 (2017), No. 1-3, pp. 208-218 DOI:10.1504/IJVD.2017.08260310.1504/IJVD.2017.082603Search in Google Scholar

28 M. Kiani, A .R. Yildiz: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization, Archives of Computational Methods in Engineering 23 (2016), No. 4, pp. 723-734 DOI:10.1007/s11831-015-9155-y10.1007/s11831-015-9155-ySearch in Google Scholar

29 A. Karaduman, B. S. Yıldız, A. R. Yıldız: Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry, 80 (2020), No. 2-4, pp. 330-345 DOI:10.1504/IJVD.2019.10987510.1504/IJVD.2019.109875Search in Google Scholar

30 D. Karaboga, B. Basturk: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization 39 (2007), No. 3, pp. 459-471 DOI:10.1007/s10898-007-9149-x10.1007/s10898-007-9149-xSearch in Google Scholar

31 S. Khalilpourazari, S. Khalilpourazary: A Robust Stochastic Fractal Search approach for optimization of the surface grinding process, Swarm and Evolutionary Computation 38 (2018), pp. 173-186 DOI:10.1016/j.swevo.2017.07.00810.1016/j.swevo.2017.07.008Search in Google Scholar

32 G. G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, A. H. Gandomi: Structural optimization using multi-objective modified adaptive symbiotic organisms search, Expert Systems with Applications 125 (2019), pp. 425-441 DOI:10.1016/j.eswa.2019.01.06810.1016/j.eswa.2019.01.068Search in Google Scholar

33 N. Panagant, S. Bureerat: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution, Engineering Optimization 50 (2018), No. 10, pp. 1645-1661 DOI:10.1080/0305215X.2017.141740010.1080/0305215X.2017.1417400Search in Google Scholar

34 B. Aslan, A. R. Yildiz: Optimum design of automobile components using lattice structures for additive manufacturing, Materials Testing 62 (2020), pp. 633-639 DOI:10.3139/120.11152710.3139/120.111527Search in Google Scholar

35 S. I. Song, G. J. Park: Multidisciplinary optimization of an automotive door with a tailored blank, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 220 (2006), No. 2, pp. 151-163 DOI:10.1243/095440706X7277210.1243/095440706X72772Search in Google Scholar

36 B. D. Raja, R. L. Jhala, V. K. Patel: Thermal-hydraulic optimization of plate heat exchanger: A multi-objective approach, International Journal of Thermal Sciences 124 (2018), pp. 522-535 DOI:10.1016/j.ijthermalsci.2017.10.03510.1016/j.ijthermalsci.2017.10.035Search in Google Scholar

37 A. R. Yildiz: Comparison of evolutionary based optimization algorithms for structural design optimization, Engineering Applications of Artificial Intelligence 26 (2013), No. 1, pp. 327-333 DOI:10.1016/j.engappai.2012.05.01410.1016/j.engappai.2012.05.014Search in Google Scholar

38 A. R. Yildiz, K. Saitou: Topology synthesis of multi-component structural assemblies in continuum domains, Transactions of ASME, Journal of Mechanical Design 133 (2011), No. 1, 011008-9 DOI:10.1115/1.400303810.1115/1.4003038Search in Google Scholar

39 H. Abderazek, A. R. Yildiz, S. Mirjalili: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism, Knowledge-Based Systems 105 (2020) DOI:10.1016/j.knosys.2019.10523710.1016/j.knosys.2019.105237Search in Google Scholar

40 A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim: Water cycle algorithm for solving multi-objective optimization problems, Soft Computing 19 (2015), No. 9, pp. 2587-2603 DOI:10.1007/s00500-014-1424-410.1007/s00500-014-1424-4Search in Google Scholar

41 H. Abderazek, A. R. Yildiz, S. M. Sait: Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 121-136 DOI:10.1504/IJVD.2019.10986210.1504/IJVD.2019.109862Search in Google Scholar

42 H. Abderazek, A. R. Yildiz, S. M. Sait: Mechanical engineering design optimisation using novel adaptive differential evolution algorithm, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 285-329 DOI:10.1504/IJVD.2019.10987310.1504/IJVD.2019.109873Search in Google Scholar

43 N. Panagan, N. Pholdee; K. Wansasueb, S. Bureerat, A. R. Yildiz, S. M. Sait: Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame, International Journal of vehicle Design 80 (2019), No. 2-4, pp. 176-208 DOI:10.1504/IJVD.2019.10986310.1504/IJVD.2019.109863Search in Google Scholar

44 R. Sarangkum, K. Wansasueb, N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation, International Journal of vehicle Design 80 (2019), No. 2-4, pp. 162-175 DOI:10.1504/IJVD.2019.10986410.1504/IJVD.2019.109864Search in Google Scholar

45 C. M. Aye, N. Pholdee, A. R. Yildiz, S. Bureerat, S. M. Sait: Multi-surrogate-assisted metaheuristics for crashworthiness optimisation, International Journal of vehicle Design 80 (2019), No. 2-4, pp. 223-240 DOI:10.1504/IJVD.2019.10986610.1504/IJVD.2019.109866Search in Google Scholar

46 Z. Wenjei, K. Saitou: Multi-material topology optimization using ordered SIMP interpolation, Structural and Multidisciplinary Optimization 55 (2017), No. 2, pp. 477-491 DOI:10.1007/s00158-016-1513-310.1007/s00158-016-1513-3Search in Google Scholar

47 Q. Askari, I. Younas and M. Saeed, Political Optimizer: A novel socio-inspired meta-heuristic for global optimization, Knowledge-Based Systems 195 (2020), No. 105709 DOI:10.1016/j.knosys.2020.10570910.1016/j.knosys.2020.105709Search in Google Scholar

48 E. Demirci, A. R. Yıldız: A new hybrid approach for reliability-based design optimization of structural components, Materials Testing 61 (2019), pp. 111-119 DOI:10.3139/120.11129110.3139/120.111291Search in Google Scholar

49 A. R. Yildiz: A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems, International Journal of Advanced Manufacturing Technology 105 (2019), pp. 5091-5104 DOI:10.1007/s00170-019-04532-110.1007/s00170-019-04532-1Search in Google Scholar

50 S. Bureerat, N. Pholdee: Optimal truss sizing using an adaptive differential evolution algorithm, Journal of Computing in Civil Engineering 30 (2015), No. 2, Art No. 04015019 DOI:10.1061/(ASCE)CP.1943-5487.000048710.1061/(ASCE)CP.1943-5487.0000487Search in Google Scholar

51 S. Arora, S. Singh: Butterfly optimization algorithm: A novel approach for global optimization, Soft Computing 23 (2019), pp. 715-734 DOI:10.1007/s00500-018-3102-4A.10.1007/s00500-018-3102-4ASearch in Google Scholar

52 S. Bureerat, N. Pholdee: Inverse problem based differential evolution for efficient structural health monitoring of trusses, Applied Soft Computing 66 (2018), pp. 462-472 DOI:10.1016/j.asoc.2018.02.04610.1016/j.asoc.2018.02.046Search in Google Scholar

53 P. P. Prajapati, V. K. Patel: Comparative analysis of nanofluid-based Organic Rankine Cycle through thermo economic optimization, Heat Transfer—Asian Research 48 (2019), No. 7, pp. 3013-3038 DOI:10.1002/htj.2152810.1002/htj.21528Search in Google Scholar

54 S. Gupta, K. Deep, M. Seyedali, J. H. Kim: A modified sine cosine algorithm with novel transition parameter and mutation operator for global optimization, Expert Systems with Applications 154 (2020), 113395 DOI:10.1016/j.eswa.2020.11339510.1016/j.eswa.2020.113395Search in Google Scholar

55 S. Gupta, K. Deep: A novel random walk grey wolf optimizer, Swarm and evolutionary computation 44 (2019), pp. 101-112 DOI:10.1016/j.swevo.2018.01.00110.1016/j.swevo.2018.01.001Search in Google Scholar

56 S. Gupta, K. Deep: Improved sine cosine algorithm with crossover scheme for global optimization, Knowledge-Based Systems 165 (2019), pp. 374-406 DOI:10.1016/j.knosys.2018.12.00810.1016/j.knosys.2018.12.008Search in Google Scholar

57 A. R. Yildiz, F. Öztürk: Hybrid Taguchi-Harmony Search Approach for Shape Optimization, Recent Advances in Harmony Search Algorithm Book Series: Studies in Computational Intelligence 270 (2010), pp. 89-98 DOI:10.1007/978-3-642-04317-8_810.1007/978-3-642-04317-8_8Search in Google Scholar

58 S. Gupta, K. Deep: Random walk grey wolf optimizer for constrained engineering optimization problems, Computational Intelligence 34 (2018), pp. 1025-1045 DOI:10.1111/coin.1216010.1111/coin.12160Search in Google Scholar

59 S. Mirjalili: The ant lion optimizer, Advances in Engineering Software 83 (2015), pp. 80-98 DOI:10.1016/j.advengsoft.2015.01.01010.1016/j.advengsoft.2015.01.010Search in Google Scholar

60 A. Kaveh, M. Khayatazad: A new meta-heuristic method: ray optimization, Computers & Structures 112 (2012), pp. 283-294 10.1016/j.compstruc.2012.09.003Search in Google Scholar

61 H. J. Soh, J. H. Yoo: Optimal shape design of a brake calliper for squeal noise reduction considering system instability, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 224 (2010), No. 7, pp. 909-925 DOI:10.1243/09544070JAUTO138510.1243/09544070JAUTO1385Search in Google Scholar

62 S. Gupta, K. Deep: Optimal coordination of overcurrent relays using improved leadership-based grey wolf optimizer, Arabian Journal for Science and Engineering 45 (2020), pp. 2081-2091 DOI:10.1007/s13369-019-04025-z10.1007/s13369-019-04025-zSearch in Google Scholar

63 S. Gupta, K. Deep: Cauchy grey wolf optimiser for continuous optimisation problems, Journal of Experimental & Theoretical Artificial Intelligence 30 (2018), pp. 1051-1075 DOI:10.1080/0952813X.2018.151308010.1080/0952813X.2018.1513080Search in Google Scholar

64 S. Gupta, K. Deep: An opposition-based chaotic grey wolf optimizer for global optimisation tasks, Journal of Experimental & Theoretical Artificial Intelligence 31 (2019), pp. 751-779 DOI:10.1080/0952813X.2018.155471210.1080/0952813X.2018.1554712Search in Google Scholar

65 S. Gupta, K. Deep, A. A. Heidari, H. Moayedi, H. Chen: Harmonized salp chain-built optimization, Engineering with Computers (2019), pp. 1-31 DOI:10.1007/s00366-019-00871-510.1007/s00366-019-00871-5Search in Google Scholar

66 B. S. Yildiz: Natural frequency optimization of vehicle components using the interior search algorithm, Materials Testing 59 (2017), No. 5, pp. 456-458 DOI:10.3139/120.11101810.3139/120.111018Search in Google Scholar

67 C. A. Coello Coello, E. Mezura Montes: Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Advanced Engineering Informatics 16 (2002), No. 3, pp. 193-203 DOI:10.1016/S1474-0346(02)00011-310.1016/S1474-0346(02)00011-3Search in Google Scholar

68 A. R. Yildiz, N. Öztürk, N. Kaya, F. Öztürk: Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm, Structural and Multidisciplinary Optimization 34 (2007), No. 4, pp. 317-332 DOI:10.1007/s00158-006-0079-x10.1007/s00158-006-0079-xSearch in Google Scholar

69 N. Panagan, N. Pholdee, K. Wansasueb, S. Bureerat; A. R. Yildiz; S. M. Sait: Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame, International Journal of vehicle Design 80 (2019), No. 2-4, pp. 176-208 DOI:10.1504/IJVD.2019.10986310.1504/IJVD.2019.109863Search in Google Scholar

70 R. Sarangkum, K. Wansasueb, N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz; S. M. Sait: Automated design of aircraft fuselage stiffeners using multi objective evolutionary optimisation, International Journal of vehicle Design 80 (2019), No. 2-4, pp. 162-175 DOI:10.1504/IJVD.2019.10986410.1504/IJVD.2019.109864Search in Google Scholar

71 C. M. Aye, N. Pholdee, A. R. Yildiz, S. Bureerat, S. M. Sait: Multi-surrogate-assisted metaheuristics for crashworthiness optimisation, International Journal of vehicle Design, 80 (2019), No. 2-4, pp. 223-240 DOI:10.1504/IJVD.2019.10986610.1504/IJVD.2019.109866Search in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Articles in the same Issue

  1. Frontmatter
  2. Frontmatter
  3. Materialography
  4. Effect of cooling rates of solution treatment on rejuvenation heat-treated microstructures of a cast nickel-based superalloy
  5. Component-oriented testing and simulation
  6. Characterization of the torsional vibration behavior of circular and rectangular cross-sectional arc springs: Theory and experiments
  7. Materialography
  8. Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering
  9. Materials testing for welding and additive manufacturing applications
  10. Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel
  11. Ultra-sonic testing
  12. Ultrasonic C-scan techniques for the evaluation of impact damage in CFRP
  13. Component-oriented testing and simulation
  14. Optimum structural design of seat frames for commercial vehicles
  15. Wear testing
  16. Investigation of wear on the upper edges of webs of thin-film coated single-screw extruders processing pure polymers
  17. Materials testing for welding and additive manufacturing applications
  18. The corrosion behavior of marine aluminum alloy MIG welded joints in a simulated tropical marine atmosphere
  19. Component-oriented testing and simulation
  20. A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems
  21. Fatigue testing
  22. Preparation and fatigue behavior of graphene-based aerogel/epoxy nanocomposites
  23. Component-oriented testing and simulation
  24. Manufacturing of Al-Li-Si3N4 metal matrix composite for weight reduction
  25. Materials testing for welding and additive manufacturing applications
  26. Strength of double-reinforced adhesive joints
  27. Production-oriented testing
  28. Variation of electrode materials and parameters in the EDM of an AA7075-TiO2 composite
  29. Analysis of physical and chemical properties
  30. Soft chemical processing approach for the valorization of seafood waste by-products as a source of bioactive polymers
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mt-2020-0022/html
Scroll to top button