Startseite Mathematik A new approach to metrical fixed point theorems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new approach to metrical fixed point theorems

  • R. P. Pant , Vladimir Rakočević EMAIL logo , Dhananjay Gopal und Bharti Joshi
Veröffentlicht/Copyright: 7. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we present new conditions yielding a unique fixed point for non expansive type mappings. We also obtain common fixed point theorems for mappings that not necessarily satisfy any known contractive type conditions. Since general methods for studying common fixed points of non-contractive mappings are not available, our present findings provides a new tools in this direction. Moreover, a common fixed point theorem is used to demonstrate in solving nonlinear integral equation problem.

  1. (Communicated by Gregor Dolinar)

Acknowledgement

The authors thank Editor-in-Chief/Area Editors and Referee(s) for their valuable comments and suggestions, which were very much useful to improve the paper significantly.

References

[1] Banach S.: Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math. 3 (1922) 133–181.10.4064/fm-3-1-133-181Suche in Google Scholar

[2] Berinde, V.—Petrusel, A.—Rus, I. A.: Remarks on the terminology of the mappings in fixed point iterative methods in metric spaces, Fixed Point Theory 24(2) 2023, 525–540.10.24193/fpt-ro.2023.2.05Suche in Google Scholar

[3] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976) 241–251.10.1090/S0002-9947-1976-0394329-4Suche in Google Scholar

[4] Chatterjea, S. K. : Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727–730.Suche in Google Scholar

[5] Ćirić, LJ. B.: On contraction type mappings, Math. Balkanica 1 (1971), 52–57.Suche in Google Scholar

[6] Ćirić, LJ. B.: Generalised contractions and fixed point theorems, Publ. Inst. Math. (Beograd) (N.S.) 26 (1971), 19–26.Suche in Google Scholar

[7] Gopal, D.—Ranadive, A. S.: R. P. Pant, Common fixed points of absorbing maps, Bull. Marathwada Math. Soc. 9(1) (2008), 43–48.Suche in Google Scholar

[8] Gopal, D.—Abbas, M.—Vetro, C.: Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput. 232, (2014), 955–967.10.1016/j.amc.2014.01.135Suche in Google Scholar

[9] Kannan, R.: Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71–76.10.2307/2316437Suche in Google Scholar

[10] Kannan, R.: Some results on fixed points-II, Amer. Math. Monthly 76 (1969), 405–408.10.1080/00029890.1969.12000228Suche in Google Scholar

[11] Pant, R. P.: Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440.10.1006/jmaa.1994.1437Suche in Google Scholar

[12] Pant, R. P.: Common fixed points of four mappings, Bull. Calcutta Math. Soc. 90 (1998), 281–286.Suche in Google Scholar

[13] Pant, R. P.: A common fixed point theorem under a new condition, Indian J. Pure Appl. Math. 30(2) (1999), 147–152.Suche in Google Scholar

[14] Pant, R. P.: Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284–289.10.1006/jmaa.1999.6560Suche in Google Scholar

[15] Pant, A.—Pant, R. P.: Fixed points and continuity of contractive maps, Filomat 31(11) (2017), 3501–3506.10.2298/FIL1711501PSuche in Google Scholar

[16] Pant, A.—Pant, R. P.—Joshi, M. C.: Caristi type and Meir-Keeler type fixed point theorems, Filomat 33(12) (2019), 3711–3721.10.2298/FIL1912711PSuche in Google Scholar

[17] Pant, R. P.—Rakočević, V.—Gopal, Dhananjay—Pant, Abhijit—Ram, Mangey: A general fixed point theorem, Filomat 35(12) (2021), 4061–4072.10.2298/FIL2112061PSuche in Google Scholar

[18] Pathak, H. K.—Cho, Y. J.—Kang, S. M.: Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247–257.Suche in Google Scholar

[19] Pathak, H. K.—Cho, Y. J.—Kang, S. M.—Lee, B. S.: Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematiche L (1995), 15–33.Suche in Google Scholar

[20] Pathak, H. K.—Khan, M. S.—Tiwari, R.: A common fixed point theorem and its application to nonlinear integral equation, Comput. Math. Appl. 53 (2007), 961–971.10.1016/j.camwa.2006.08.046Suche in Google Scholar

[21] Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136(5) (2008), 1861–1869.10.1090/S0002-9939-07-09055-7Suche in Google Scholar

Received: 2024-02-27
Accepted: 2024-11-06
Published Online: 2025-05-07
Published in Print: 2025-04-28

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0028/pdf
Button zum nach oben scrollen