Startseite On a theorem of Nathanson on Diophantine approximation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a theorem of Nathanson on Diophantine approximation

  • Jaroslav Hančl EMAIL logo und Tho Phuoc Nguyen
Veröffentlicht/Copyright: 25. Februar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In 1974, M. B. Nathanson proved that every irrational number α represented by a simple continued fraction with infinitely many elements greater than or equal to k, is approximable by an infinite number of rational numbers p/q satisfying |αp/q|<1/(k2+4q2). In this paper, we refine this result.

MSC 2010: 11J82; 11A55

This work was supported by SGS Grant No. SGS01/PřF/2024.


Acknowledgement

The authors thank unknown referee for valuable suggestions.

  1. (Communicated by Milan Paštéka)

References

[1] Bahnerová, S.—Hančl, J.: Sharpening of the theorem of Vahlen and related theorems, J. Ramanujan. Math. Soc. 36(2) (2021), 109–121.Suche in Google Scholar

[2] Borel, É.: Sur l’approximation des nombres par des nombres rationnels, C. R. Acad. Sci. Paris 136 (1903), 1054–1055.Suche in Google Scholar

[3] Borel, É.: Contribution `a l’analyse arithmétique du continu, J. Math. Pures 9(5) (1903), 329–375.Suche in Google Scholar

[4] Borwein, J.—Borwein, P.: Pi and the Agm: A Study in Analytic Number Theory and Computational Complexity, John Wiley & Sons, New York, 1987.Suche in Google Scholar

[5] Cohn, J. H. E.: Hurwitz’s theorem, Proc. Amer. Math. Soc. 38 (1973), 436.10.1090/S0002-9939-1973-0313195-9Suche in Google Scholar

[6] Dirichlet, L. G. P.: Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einige Anwendungen auf die Theorie der Zahlen, S.-B. Preuss. Akad. Wiss. (1842), 93–95.Suche in Google Scholar

[7] Fel’Dman, N. I.—Nesterenko, Y. V.: Transcendental Numbers. Encyclopaedia of Mathematical Sciences, Vol. 44: Number Theory IV (A. N. Parshin and I. R. Shafarevich, eds.), Springer-Verlag, New York, 1998.Suche in Google Scholar

[8] Hančl, J.: Sharpening of theorems of Vahlen and Hurwitz and approximation properties of the golden ratio, Arch. Math. (Basel) 105(2) (2015), 129–137.10.1007/s00013-015-0788-8Suche in Google Scholar

[9] Hančl, J.: Second basic theorem of Hurwitz, Lith. Math. J. 56(1) (2016), 72–76.10.1007/s10986-016-9305-4Suche in Google Scholar

[10] Hančl, J.—Nair, R.: On a theorem of Borel on Diophantine approximation, Ramanujan J. (2024); https://doi.org/10.1007/s11139-024-00922-6.10.1007/s11139-024-00922-6Suche in Google Scholar

[11] Hardy, G. H.—Wright, E. M.: An Introduction to the Theory of Numbers, 6th ed., revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles, Oxford University Press, Oxford, 2008.10.1093/oso/9780199219858.002.0002Suche in Google Scholar

[12] Hensley, D.: Continued Fractions, Word Scientific Publishing, 2006.10.1142/9789812774682Suche in Google Scholar

[13] Hurwitz, A.: Über die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche, Math. Ann. 39(2) (1891), 279–284 (in German).10.1007/BF01206656Suche in Google Scholar

[14] Jones, W. B.—Thron, W. J.: Continued Fractions Analytic Theory and Applications, Encyclopedia of Mathematics and its applications, Vol. 11, Cambridge University Press, 1984.10.1017/CBO9780511759550Suche in Google Scholar

[15] Karpenkov, O.: Geometry of Continued Fractions, Algorithms and Computation in Mathematics, Vol. 26, Springer, Heidelberg, 2013.10.1007/978-3-642-39368-6Suche in Google Scholar

[16] Khinchin, A. Y.: Continued fractions, The University of Chicago Press, Chicago, (1964).10.1063/1.3051235Suche in Google Scholar

[17] Nathanson M. B.: Approximation by continued fractions, Proc Amer. Math. Soc. 45 (1974), 323–324.10.1090/S0002-9939-1974-0349594-XSuche in Google Scholar

[18] Rosen, K. H.: Elementary Number Theory and its Applications, Addison Wesley, fifth edition, 2005.Suche in Google Scholar

[19] Schmidt, W.: Diophantine Approximation. Lecture Notes in Math., Vol. 785, Springer, Berlin, 1980.Suche in Google Scholar

[20] Vahlen, K. TH.: Über Näherungswerte und Kettenbrüche, J. Reine Angew. Math. 115 (1895), 221–233.10.1515/crll.1895.115.221Suche in Google Scholar

[21] Wall, H. S.: Analytic Theory of Continued Fractions, New York, Chelsea, 1948.Suche in Google Scholar

Received: 2024-07-23
Accepted: 2024-09-02
Published Online: 2025-02-25
Published in Print: 2025-02-25

© 2025 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Generalized Sasaki mappings in d0-Algebras
  2. On a theorem of Nathanson on Diophantine approximation
  3. Constructing infinite families of number fields with given indices from quintinomials
  4. Partitions into two Lehmer numbers in ℤq
  5. Fundamental systems of solutions of some linear differential equations of higher order
  6. On k-Circulant matrices involving the Lucas numbers of even index
  7. Explicit formulae for the Drazin inverse of the sum of two matrices
  8. On nonoscillation of fractional order functional differential equations with forcing term and distributed delays
  9. Novel generalized tempered fractional integral inequalities for convexity property and applications
  10. Convergence of α-Bernstein-Durrmeyer operators about a collection of measures
  11. The problem of finding eigenvalues and eigenfunctions of boundary value problems for an equation of mixed type
  12. Orbital Hausdorff dependence and stability of the solution to differential equations with variable structure and non-instantaneous impulses
  13. Improvements on the Leighton oscillation theorem for second-order dynamic equations
  14. Topogenous orders on forms
  15. Comparison of topologies on fundamental groups with subgroup topology viewpoint
  16. An elementary proof of the generalized Itô formula
  17. Asymptotic normality for kernel-based test of conditional mean independence in Hilbert space
  18. Advancing reliability and medical data analysis through novel statistical distribution exploration
  19. Historical notes on the 75th volume of Mathematica Slovaca - Authors of the first issue from 1951
Heruntergeladen am 25.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0002/html?lang=de
Button zum nach oben scrollen