Startseite Mathematik Induced mappings on the hyperspace of totally disconnected sets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Induced mappings on the hyperspace of totally disconnected sets

  • José G. Anaya , Martha Hernández-Castañeda und David Maya EMAIL logo
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The symbol TD(X) denotes the hyperspace of all nonempty totally disconnected compact subsets of a Hausdorff space X. This hyperspace is endowed with the Vietoris topology. For a mapping between Hausdorff spaces f : XY, define the induced mapping TD(f) : TD(X) → TD(Y) by TD(f)(A) = f(A) (the image of A under f). In the current paper, we study the relationships between the condition f belongs to a class of mappings between Hausdorff spaces 𝕄 and the condition TD(f) belongs to 𝕄.

MSC 2010: 54B20

The work of the second author was supported by Becas de Posgrado de CONACyT, Grant No. 798362.


Acknowledgement

We express our gratitude to the reviewer for their insightful comments and valuable suggestions, which significantly contributed to enhancing the overall quality and clarity of this paper.

  1. Communicated by L’ubica Holá

References

[1] Arens, R.: Note on convergence in topology, Math. Mag. 23 (1950), 229–234.10.2307/3028991Suche in Google Scholar

[2] Engelking, R.: General topology, rev. and compl. edition, Sigma Ser. Pure Math., Vol. 6, Berlin: Heldermann Verlag, 1989.Suche in Google Scholar

[3] Escobedo, R.—Pellicer-Covarrubias, P.—Sánchez-Gutiérrez, V.: The hyperspace of totally disconnected sets, Glas. Mat. III. Ser. 55(1)(2020), 113–128.10.3336/gm.55.1.10Suche in Google Scholar

[4] Franklin, S. P.: Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.10.4064/fm-57-1-107-115Suche in Google Scholar

[5] García, Y.—Maya, D.: Induced mappings on symmetric products of Hausdorff spaces, Math. Slovaca 72(5) (2022), 1287–1300.10.1515/ms-2022-0088Suche in Google Scholar

[6] Illanes, A.: Open induced mappings, an example, Topology Proc. 53 (2019), 37–45.Suche in Google Scholar

[7] Maya, D.—Pellicer-Covarrubias, P.—Pichardo-Mendoza, R.: Induced mappings on the hyperspace of convergent sequences, Topology Appl. 229 (2017), 85–105.10.1016/j.topol.2017.07.008Suche in Google Scholar

[8] Michael, E.: Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.10.1090/S0002-9947-1951-0042109-4Suche in Google Scholar

[9] Van Douwen, E. K.: The product of a Fréchet space and a metrizable space, Topology Appl. 47(3) (1992), 163–164.10.1016/0166-8641(92)90026-VSuche in Google Scholar

Received: 2023-04-09
Accepted: 2024-01-16
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0077/pdf
Button zum nach oben scrollen