Startseite New results for the Marshall-Olkin family of distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New results for the Marshall-Olkin family of distributions

  • Emilio Gómez-Déniz EMAIL logo , M. E. Ghitany und D. K. Al-Mutairi
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Marshall-Olkin family of probability distributions has been the inspiration of numerous research publications in the field of probability distributions. In this paper, we present several new properties of this family. In particular, we focus on stochastic orders, stress-strength reliability, Lorenz and the Leimkhuler curves, compounding, and integrated tail distribution. Two applications related to Lorenz curves and ruin theory are finally presented.

MSC 2010: 62F10; 60E15; 62F05

Acknowledgement

The authors would like to thank the anonymous referees for valuable comments and suggestions which improved the presentation of this paper.

EGD was partially funded by grant PID2021-127989OB-I00 (Ministerio de Economía y Competitividad, Spain) and by grant TUR-RETOS2022-075 (Ministerio de Industria, Comercio y Turismo).

  1. Communicated by Gejza Wimmer

References

[1] Ahmad, H. A. H.—Almetwally, E. M.: Marshall-Olkin generalized Pareto distribution: Bayesian and non Bayesian estimation, Pak. J. Stat. Oper. Res. 16 (2020), 21–33.10.18187/pjsor.v16i1.2935Suche in Google Scholar

[2] Alshangiti, A. M.—Kayid, M.—Alarfaj, B.: A new family of Marshall-Olkin extended distributions, J. Comput. Appl. Math. 271(1) (2014), 369–379.10.1016/j.cam.2014.04.020Suche in Google Scholar

[3] Balakrishnan, N.—Sarabia, J.—Kolev, N.: A simple relation between the Leimkuhler curve and the mean residual life, J. Informetr. 4(4) (2010), 602–607.10.1016/j.joi.2010.06.009Suche in Google Scholar

[4] Barakat, H. M.—Ghitany, M. E.—Al-Hussaini, E. K.: Asymptotic distributions of order statistics and record values under the Marshall-Olkin parameterization operator, Comm. Statist. Theory Methods 38 (2009), 2267–2273.10.1080/03610920802361373Suche in Google Scholar

[5] Barreto-Souza, W.—Lemonte, A. J.—Cordeiro, G. M.: General results for the Marshall and Olkin’s family of distributions, An. Acad. Brasil. Ciênc. 85(1) (2013), 3–21.10.1590/S0001-37652013000100002Suche in Google Scholar

[6] Bryson, M.: Heavy Tailed Distributions: Properties and Tests, Technometrics 16(1) (1974), 61–68.10.1080/00401706.1974.10489150Suche in Google Scholar

[7] Burrell, Q. L.: Symmetry and other transformation features of Lorenz/Leimkuhler representations of informetric data, Inf. Process. Manag. 41 (2005), 1317–1329.10.1016/j.ipm.2005.03.016Suche in Google Scholar

[8] Dickson, D.: Insurance Risk and Ruin, Cambridge University Press, Cambridge, 2005.10.1017/CBO9780511624155Suche in Google Scholar

[9] Embrechts, P.—Goldie, C. M.: On closure and factorization properties of subexponential and related distributions, J. Aust. Math. Soc. 29 (1980), 243–256.10.1017/S1446788700021224Suche in Google Scholar

[10] Foss, S.—Korshunov, D.—Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Series in Operations Research and Financial Engineering, Springer, New York, 2011.10.1007/978-1-4419-9473-8Suche in Google Scholar

[11] García, V.—Gómez-Déniz, E.—Vázquez-Polo, F. J.: A new skew generalization of the Normal distribution: properties and applications, Comput. Statist. Data Anal. 54 (2010), 2021–2034.10.1016/j.csda.2010.03.003Suche in Google Scholar

[12] Ghitany, M. E.: Marshall-Olkin extended Pareto distribution and its application, Int. J. Appl. Math. Comput. Sci. 18 (2005), 17–31.Suche in Google Scholar

[13] Ghitany, M. E.—Al-Awadhi, F. A.—Alkhalfan, L. A.: Marshall-Olkin extended Lomax distribution and its application to censored data, Comm. Statist. Theory Methods 36 (2007), 1855–1866.10.1080/03610920601126571Suche in Google Scholar

[14] Ghitany, M. E.—Kotz, S.: Reliability properties of extended linear failure-rate distribution, Probab. Engrg. Inform. Sci. 21 (2007), 441–450.10.1017/S0269964807000071Suche in Google Scholar

[15] Jessen, A.—Mikosch, T.: Regularly varying functions, Publ. Inst. Math. 80(94) (2006), 171–192.10.2298/PIM0694171JSuche in Google Scholar

[16] Kleiber, C.—Kotz, S.: Statistical Size Distributions in Economics and Actuarial Sciences, John Wiley & Sons, Inc., 2003.10.1002/0471457175Suche in Google Scholar

[17] Klüppelberg, C.: Subexponential distributions and integrated tails, J. Appl. Probab. 25 (1988), 132–141.10.1017/S0021900200040705Suche in Google Scholar

[18] Konstantinides, D.: Risk Theory. A Heavy Tail Approach, World Scientific Publishing, 2018.10.1142/10523Suche in Google Scholar

[19] Kotz, S.—Kumelskii, Y.—Pensky, M.: The Stress-Strenght Model and its Generalizations, World Scientific Publising, 2003.10.1142/5015Suche in Google Scholar

[20] Marshall, A. W.–Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84(3) (1997), 641–652.10.1093/biomet/84.3.641Suche in Google Scholar

[21] Okasha, H. M.—El-Baz, A. H.—Basheer A. M.: On Marshall-Olkin extended inverse Weibull distribution: properties and estimation using type-II censoring data, J. Stat. Appl. Probab. 7(1) (2020), 9–21.10.18576/jsapl/070102Suche in Google Scholar

[22] Rolski, T.—Schmidli, H.—Schmidt, V.—Teugel, J.: Stochastic Processes for Insurance and Finance, John Wiley & Sons, 1999.10.1002/9780470317044Suche in Google Scholar

[23] Ryu, H. K.—Slottje, D. J.: Two flexible functional form approaches for approximating the Lorenz curve, J. Econometrics 72 (1996), 251–274.10.1016/0304-4076(94)01722-0Suche in Google Scholar

[24] Sarabia, J. M.—Castillo, E.: About a class of max-stable families with applications to income distributions, Metron LXIII 3 (2005), 505–527.Suche in Google Scholar

[25] Sarabia, J. M.—Gómez-Déniz, E.—Sarabia, M.—Prieto, F.: A general method for generating parametric Lorenz and Leimkuhler curves, J. Informetr. 4 (2010), 424–539.10.1016/j.joi.2010.06.002Suche in Google Scholar

[26] Shaked, M.—Shanthikumar, J. G.: Stochastic Orders. Series: Springer Series in Statistics, Springer, 2007.10.1007/978-0-387-34675-5Suche in Google Scholar

Received: 2023-06-22
Accepted: 2023-12-06
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0075/html?lang=de
Button zum nach oben scrollen