Startseite On certain star versions of the Hurewicz property using ideals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On certain star versions of the Hurewicz property using ideals

  • Debraj Chandra EMAIL logo und Nur Alam
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article is a continuation of the study of star-𝓘-Hurewicz and strongly star-𝓘-Hurewicz properties done in [Das et al.:On certain variations of 𝓘-Hurewicz property, Topology Appl. 251 (2018), 363–376]. We primarily consider and study the relative versions of star-𝓘-Hurewicz and strongly star-𝓘-Hurewicz properties. We study their relationships with the star-Hurewicz, strongly star-Hurewicz, star-𝓘-Hurewicz, strongly star-𝓘-Hurewicz and similar other properties. Few related games are also studied.

Acknowledgement

The authors would like to express their deep gratitude to the anonymous referee for numerous useful comments and suggestions which improved the presentation of the paper considerably.

  1. Communicated by David Buhagiar

References

[1] Alam, N.: Some remarks on 𝓚-starcompact and related spaces, Filomat 37(11) (2023), 3591–3599.Suche in Google Scholar

[2] Alam, N.—Chandra, D.: Some remarks on games of certain star selection principles, Acta Math. Hungar. 166(2) (2022), 373–392.10.1007/s10474-022-01222-5Suche in Google Scholar

[3] Alster, K.: On the class of all spaces of weight not greater than ω1 whose Cartesian product with every Lindelöf space is Lindelöf, Fund. Math. 129 (1988), 133–140.10.4064/fm-129-2-133-140Suche in Google Scholar

[4] Babinkostova, L.—Kočinac, LJ. D. R.—Scheepers, M.: Combinatorics of open covers (VIII), Topology Appl. 140 (2004), 15–32.10.1016/j.topol.2003.08.019Suche in Google Scholar

[5] Babinkostova, L.—Pansera, B. A.—Scheepers, M.: Weak covering properties and selection principles, Topology Appl. 160 (2013), 2251–2271.10.1016/j.topol.2013.07.022Suche in Google Scholar

[6] Baumgartner, J. E.—Taylor, A. D.: Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241 (1978), 283–309.10.1090/S0002-9947-1978-0491193-1Suche in Google Scholar

[7] Bhardwaj, M.—Singh, S.—Tyagi, B. K.: Relative version of star-Hurewicz property, Acta Math. Hungar. 164(1) (2021), 85–100.10.1007/s10474-020-01121-7Suche in Google Scholar

[8] Bonanzinga, M.—Cammaroto, F.—Kočinac, LJ. D. R.: Star-Hurewicz and related properties, Appl. Gen. Topol. 5(1) (2004), 79–89.10.4995/agt.2004.1996Suche in Google Scholar

[9] Caserta, A.—Watson, S.: The Alexandroff duplicate and its subspaces, Appl. Gen. Topol. 8(2) (2007), 187–205.10.4995/agt.2007.1880Suche in Google Scholar

[10] Chandra, D.—Alam, N.: On localization of the star-Menger selection principle, Hacet. J. Math. Stat. 50(4) (2021), 1155–1168.10.15672/hujms.832056Suche in Google Scholar

[11] Chandra, D.—Alam, N.: Some remarks on star-Menger spaces using box products, Filomat 36(5) (2022), 1769–1774.10.2298/FIL2205769CSuche in Google Scholar

[12] Chandra, D.—Alam, N.: Further investigations on certain star selection principles, Topology Appl. 328 (2023), Art. 108446.10.1016/j.topol.2023.108446Suche in Google Scholar

[13] Chandra, D.—Alam, N.: On certain star-K variant of a selection principle, Rocky Mountain J. Math., to appear.Suche in Google Scholar

[14] Chandra, D.—Das, P.: Some further investigations of open covers and selection principles using ideals, Topology Proc. 39 (2012), 281–291.Suche in Google Scholar

[15] Da Silva, S. G.: The 𝓘-Hurewicz property and bounded families modulo an ideal, Questions Answers Gen. Topology 36(1) (2018), 31–38.Suche in Google Scholar

[16] Das, P: Certain types of open covers and selection principles using ideals, Houston J. Math. 39(2) (2013), 637–650.Suche in Google Scholar

[17] Das, P.—Chandra, D.—Samanta, U.: On certain variations of 𝓘-Hurewicz property, Topology Appl. 251 (2018), 363–376.10.1016/j.topol.2018.03.027Suche in Google Scholar

[18] Das, P.—Kočinac, LJ. D. R.—Chandra, D.: Some remarks on open covers and selection principles using ideals, Topology Appl. 202 (2016), 183–93.10.1016/j.topol.2016.01.003Suche in Google Scholar

[19] Das, P.—Samanta, U.—Chandra, D.: On certain generalized versions of groupability, Topology Appl. 258 (2019), 47–57.10.1016/j.topol.2019.02.052Suche in Google Scholar

[20] Das, P.—Samanta, U.—Chandra, D.: Some observations on Hurewicz and 𝓘-Hurewicz property, Topology Appl. 258 (2019), 202–214.10.1016/j.topol.2019.01.015Suche in Google Scholar

[21] Engelking, R.: General Topology, Heldermann Verlag, Berlin, 1989.Suche in Google Scholar

[22] Farkas, B.—Soukup, L.: More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin. 50(2) (2009), 281–295.Suche in Google Scholar

[23] Gerlits, J.—Nagy, ZS.: Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.10.1016/0166-8641(82)90065-7Suche in Google Scholar

[24] Just, W.—Miller, A. W.—Scheepers, M.—Szeptycki, P. J.: The combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.10.1016/S0166-8641(96)00075-2Suche in Google Scholar

[25] Kočinac, LJ. D. R.: Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421–431.10.5486/PMD.1999.2097Suche in Google Scholar

[26] Kočinac, LJ. D. R.: Star selection principles: A survey, Khayyam J. Math. 1(1) (2015), 82–106.Suche in Google Scholar

[27] Kočinac, LJ. D. R.: Variations of classical selection principles: An overview, Quaest. Math. 43(8) (2020), 1121–1153.10.2989/16073606.2019.1601646Suche in Google Scholar

[28] Kočinac, LJ. D. R.—Konca, ƞ.—Singh, S.: Set star-Menger and set strongly star-Menger spaces, Math. Slovaca 72(1) (2022), 185–196.10.1515/ms-2022-0013Suche in Google Scholar

[29] Kočinac, LJ. D. R.—Scheepers, M.: Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003), 131–155.10.4064/fm179-2-2Suche in Google Scholar

[30] Mrówka, S.: On completely regular spaces, Fund. Math. 41 (1954), 105–106.10.4064/fm-41-1-105-106Suche in Google Scholar

[31] Niemytzki, V.: Über die Axiome des metrischen Raumes, Math. Ann. 104 (1931), 666–671.10.1007/BF01457963Suche in Google Scholar

[32] Scheepers, M.: Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31–62.10.1016/0166-8641(95)00067-4Suche in Google Scholar

[33] Tsaban, B.: Combinatorial aspects of selective star covering properties in ι-spaces, Topology Appl. 192 (2015), 198–207.10.1016/j.topol.2015.05.082Suche in Google Scholar

Received: 2023-11-12
Accepted: 2024-01-31
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0072/html?lang=de
Button zum nach oben scrollen