Startseite Existence results for a fourth order problem with functional perturbed clamped beam boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence results for a fourth order problem with functional perturbed clamped beam boundary conditions

  • Alberto Cabada EMAIL logo , Rochdi Jebari und Lucía López-Somoza
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the existence of positive solutions for a fourth order boundary value problem coupled to functional perturbed clamped beam boundary conditions. Our main ingredient is the classical fixed point index. The problem investigated is an extension of other problems studied in previous papers by covering very general nonlocal perturbed conditions on the boundary.


First and third authors were supported by Grant PID2020-113275GB-I00, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe” of the “European Union”, and by Xunta de Galicia (Spain), project ED431C 2023/12.


  1. Communicated by Jozef Džurina

References

[1] Bai, Z.—Wang, H.: On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl. 270 (2002), 357–368.10.1016/S0022-247X(02)00071-9Suche in Google Scholar

[2] Bonanno, G.—Bella, B. D.: A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343 (2008), 1166–1176.10.1016/j.jmaa.2008.01.049Suche in Google Scholar

[3] Cabada, A.—Cid, J. A.—Sanchez, L.: Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal. 67 (2007), 1599–1612.10.1016/j.na.2006.08.002Suche in Google Scholar

[4] Cabada, A.—Enguiça, R. R.: Positive solutions of fourth order problems with clamped beam boundary conditions, Nonlinear Anal. 74 (2011), 3112–3122.10.1016/j.na.2011.01.027Suche in Google Scholar

[5] Cabada, A.—Jebari, R.: Existence results for a clamped beam equation with integral boundary conditions, Electron. J. Qual. Theory Differential Equ. (2020), Art. No. 70.10.14232/ejqtde.2020.1.70Suche in Google Scholar

[6] Cabada, A.—López-Somoza, L.—Yousfi, M.: Existence of solutions of nonlinear systems subject to arbitrary linear non-local boundary conditions, J. Fixed Point Theory Appl. 25(4) (2023), Art. No. 81. %24 pp.10.1007/s11784-023-01083-7Suche in Google Scholar

[7] Cabada, A.—Saavedra, L.: Disconjugacy characterization by means of spectral (k, nk) problems, Appl. Math. Lett. 52 (2016), 21–29.10.1016/j.aml.2015.08.007Suche in Google Scholar

[8] Coppel, W. A.: Disconjugacy. Lecture Notes in Math., Vol. 220, Springer-Verlag, Berlin-New York, 1971.10.1007/BFb0058618Suche in Google Scholar

[9] Deimling, K.: Nonlinear Functional Analysis, Springer, Berlin, 1985.10.1007/978-3-662-00547-7Suche in Google Scholar

[10] Gazzola, F.: Mathematical Models for Suspension Bridges: Nonlinear Structural Instability. Modeling, Simulations and Applications, Vol. 15, Springer, 2015.10.1007/978-3-319-15434-3Suche in Google Scholar

[11] Graef, J. R.—Henderson, J.—Yang, B.: Positive solutions to a fourth-order three point boundary value problem, Discrete Contin. Dyn. Syst. Supplement (2009), 269–275.Suche in Google Scholar

[12] Graef, J. R.—Yang, B.: Existence and nonexistence of positive solutions of fourth order nonlinear boundary-value problems, Appl. Anal. 74 (2000), 201–214.10.1080/00036810008840810Suche in Google Scholar

[13] Guo, D.—Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988.Suche in Google Scholar

[14] Lan, K. Q.: Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc. (2) 63 (2001) 690–704.10.1112/S002461070100206XSuche in Google Scholar

[15] Ma, R.—Jihui, Z.—Shengmao, F.: The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl. 215 (1997), 415–422.10.1006/jmaa.1997.5639Suche in Google Scholar

[16] Webb, J. R. L.: Remarks on positive solutions of three point boundary value problems, Dynamical Systems and Differential Equations, Wilmington, NC, 2002, Discrete and Continuous Dynamical Systems, suppl. (American Institute of Mathematical Sciences, Springfield, MO, 2003) 905–915.Suche in Google Scholar

Received: 2023-07-04
Accepted: 2024-01-10
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0067/html?lang=de
Button zum nach oben scrollen