Startseite Mathematik Generalized discrete Grüss and related results with applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized discrete Grüss and related results with applications

  • Saad Ihsan Butt , Josip Pečarić und Sanja Tipurić-Spužević EMAIL logo
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Grüss inequality is subject of interest for many authors due to its effectiveness in predicting bounds in several quadrature problems. In the present article, we give weighted treatment of the discrete Čebyšev and Grüss type inequalities pertaining two n-tuples of real numbers in which the bounding constants are mobilised with bounding sequences of real numbers. As an application estimations of discrete Ostrowski type inequalities are provided. Finally, by practicing obtained results along with Jensen’s difference, a wide range of estimations are formalised by considering Jensen-Grüss differences.

MSC 2010: 26D15; 26D20; 26D99
  1. Communicated by Marek Balcerzak

References

[1] Aglić Aljinović, A.—Pečarić, J.: Discrete weighted Montgomery identity and discrete Ostrowski type inequalities, Comput. Math. Appl. 48 (2004), 731–745.10.1016/j.camwa.2004.03.004Suche in Google Scholar

[2] Andrica, D.—Badea, C.: Grüss’ inequality for positive linear functionals, Period. Math. Hungar. 19(2) (1988), 155–167.10.1007/BF01848061Suche in Google Scholar

[3] Butt, S. I.—Bakula, M. K.—Pečarić, J.: Steffensen-Grüss inequality, J. Math. Inequal. 15(2) (2021), 799–810.10.7153/jmi-2021-15-56Suche in Google Scholar

[4] Butt, S. I.—Pečarić, Đ.—Pečarić, J.: Several Jensen-Gruss inequalities with applications in information theory, Ukr. Math. J. 74(12) (2023), 1654–1672.10.37863/umzh.v74i12.6554Suche in Google Scholar

[5] Butt, S. I.—Bakula, M. K.—Pečarić, Đ.—Pečarić, J.: Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law, Math. Methods Appl. Sci. 44(2) (2021), 1664–1673.10.1002/mma.6869Suche in Google Scholar

[6] Butt, S. I.—Pečarić, J.—Perić, I.—Praljak, M.: Multidimensional reversed Hardy type inequalities for monotone functions, Asian-Eur. J. Math. 7(4) (2014), Art. ID 1450055.10.1142/S1793557114500557Suche in Google Scholar

[7] Butt, S. I.—Pečarić, J.—Spužević, S. T.: Generalized Čebyšev and Grüss type results in weighted Lebesgue spaces, Mathematics 11(7) (2023), Art. No. 1756.10.3390/math11071756Suche in Google Scholar

[8] Cerone, P.—Dragomir, S. S.: New inequalities for the Čebyšev functional involving two n-tuples of real numbers and applications, RGMIA research report collection 5(3) (2002).Suche in Google Scholar

[9] Cerone, P.—Dragomir, S. S.: A refinement of Grüss inequality and applications, RGMI Research Report Collection 5(2) (2000), Art. No. 14.Suche in Google Scholar

[10] Grüss, G.: Über das maximum des absoluten Betrages von 1baabfxgxdx1ba2abfxdxabgxdx, Math. Z. 39 (1935), 215–226.10.1007/BF01201355Suche in Google Scholar

[11] Horvath, L.: Grüss type and related integral inequalities in probability spaces, Aequationes Math. 93 (2019), 743–756.10.1007/s00010-018-0612-1Suche in Google Scholar

[12] Izumino, S.—Pečarić, J.: Some extensions Of Grüss inequality and its applications, Nihonkai Math. J. 13(2) (2002), 159–166.Suche in Google Scholar

[13] Izumino, S.—Pečarić, J.—Tepeš, B.: Some extensions of Grüss inequality, Math. J. Toyama Univ. 26 (2003), 61–73.Suche in Google Scholar

[14] Izumino, S.—Pečarić, J.—Tepeš, B.: A Grüss-type inequality and its applications, J. Inequal. Appl. 2005 (2005), Art. ID 918685.10.1155/JIA.2005.277Suche in Google Scholar

[15] Li, X.—Mohapatra, R. N.—Rodriguez, R. S.: Grüss-type inequalities, J. Math. Anal. Appl. 267 (2002), 434–443.10.1006/jmaa.2001.7565Suche in Google Scholar

[16] Mitrinović, D. S.—Pečarić, J.—Fink, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Boston, London, 1993.10.1007/978-94-017-1043-5Suche in Google Scholar

[17] Mitrinović, D. S.—Pečarić, J. E.—Fink, A. M.: Inequalities for Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.Suche in Google Scholar

[18] Niezgoda, M.: A new inequality of Ostrowski-Grüss type and Applications to some Numerical Quadrature rules, Comput. Math. Appl. 58 (2009), 589–596.10.1016/j.camwa.2009.03.089Suche in Google Scholar

[19] Pečarić, J.—Proschan, F.—Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.Suche in Google Scholar

[20] Pečarić, J.—Tepeš, B.: Improvements of some inequalities for moments of guessing function, Math. Inequal. Appl. 8(1) (2005), 53–62.10.7153/mia-08-05Suche in Google Scholar

[21] Qin, Y.: Integral and Discrete Inequalities and their Applications, Birkhauser, Springer International Publishing Switzerland, 2016.Suche in Google Scholar

Received: 2023-08-23
Accepted: 2024-01-29
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0065/pdf
Button zum nach oben scrollen