Startseite On nonexistence of D(n)-quadruples
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On nonexistence of D(n)-quadruples

  • Zrinka Franušić EMAIL logo und Ana Jurasić
Veröffentlicht/Copyright: 14. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we show that there is no polynomial D(n)-quadruple in ℤ[X] for some polynomials n ∈ ℤ[X] that are not representable as a difference of squares of two polynomials in ℤ[X].

MSC 2010: 11C08; 11D99; 11E99

This work was supported by the Croatian Science Foundation Grant No. IP-2022-10-5008. The first author Z.F. acknowledges support from the project “Implementation of cutting-edge research and its application as part of the Scientific Center of Excellence for Quantum and Complex Systems, and Representations of Lie Algebras”, PK.1.1.02, European Union, European Regional Development Fund


  1. Communicated by István Gaál

References

[1] Bonciocat, N. C.—Cipu, M.—Mignotte, M.: There is no Diophantine D(–1)-quadruple, J. London Math. Soc. 105 (2022), 63–99.10.1112/jlms.12507Suche in Google Scholar

[2] Brown, E.: Sets in which xy + k is always a square, Math. Comp. 45 (1985), 613–620.10.1090/S0025-5718-1985-0804949-7Suche in Google Scholar

[3] Chakraborty, K.—Gupta, S.—Hoque, A.: On a conjecture of Franušić and Jadrijević: Counter-examples, Results Math. 78 (2023), Art. 18.10.1007/s00025-022-01794-2Suche in Google Scholar

[4] Dujella, A.: Diophantine m-tuples, https://web.math.pmf.unizg.hr/duje/dtuples.html.Suche in Google Scholar

[5] Dujella, A.: Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.10.4064/aa-65-1-15-27Suche in Google Scholar

[6] Dujella, A.: Number Theory, Školska knjiga, Zagreb, 2021.Suche in Google Scholar

[7] Dujella, A.: Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25–30.Suche in Google Scholar

[8] Dujella, A.: The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1–10.Suche in Google Scholar

[9] Dujella, A.: On the exceptional set in the problem of Diophantus and Davenport. Application of Fibonacci Numbers (G. E. Bergum, A. N. Philippou, A. F. Horadam, eds.), Vol. 7, Kluwer, Dordrecht, 1998, pp. 69–76.10.1007/978-94-011-5020-0_10Suche in Google Scholar

[10] Dujella, A.: What is … a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016), 772–774.10.1090/noti1404Suche in Google Scholar

[11] Dujella, A. —Fuchs, C.: A polynomial variant of a problem of Diophantus and Euler, Rocky Mountain J. Math. 33 (2003), 797–811.10.1216/rmjm/1181069929Suche in Google Scholar

[12] Dujella, A.—Fuchs, C.—Walsh, G.: Diophantine m-tuples for linear polynomials. II. Equal degrees, J. Number Theory 120 (2006), 213–228.10.1016/j.jnt.2005.12.005Suche in Google Scholar

[13] Dujella, A.—Jurasić, A.: Some Diophantine triples and quadruples for quadratic polynomials, J. Comb. Number Theory 3(2) (2011), 123–141.Suche in Google Scholar

[14] Dujella, A.—Soldo, I.: Diophantine quadruples in Z[2] , An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 18 (2010), 81–98.Suche in Google Scholar

[15] Franušić, Z.: Diophantine quadruples in the ring Z[2] , Math. Commun. 9 (2004), 141–148.Suche in Google Scholar

[16] Franušić, Z.: A Diophantine problem in Z[(1+d)/2] , Studia Sci. Math. Hungar. 46 (2009), 103–112.10.1556/sscmath.2008.1076Suche in Google Scholar

[17] Franušić, Z.: Diophantine quadruples in Z[4k+3] , Ramanujan J. 17 (2008), 77–88.10.1007/s11139-007-9015-ySuche in Google Scholar

[18] Franušić, Z.: Diophantine quadruples in the ring of integers of Q(23) , Miskolc Math. Notes 14 (2013), 893–903.10.18514/MMN.2013.753Suche in Google Scholar

[19] Franušić, Z.—Jadrijević, B.: D(n)-quadruples in the ring of integers of Q(2,3) , Math. Slovaca 69 (2019), 1263–1278.10.1515/ms-2017-0307Suche in Google Scholar

[20] Franušić, Z.—Soldo, I.: The problem of Diophantus for integers of Q(3) , Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 15–25.Suche in Google Scholar

[21] Gibbs, P.: Adjugates of Diophantine Quadruples, Integers 10 (2010), 201–209.10.1515/integ.2010.015Suche in Google Scholar

[22] Gupta, H.—Singh, K.: On k-triad sequences, Internat. J. Math. Math. Sci. 5 (1985), 799–804.10.1155/S0161171285000886Suche in Google Scholar

[23] Jukić Matić, LJ.: On D(w)-quadruples in the rings of integers of certain pure number fields, Glas. Mat. Ser. III 49 (2014), 37–46.10.3336/gm.49.1.04Suche in Google Scholar

[24] Jurasić, A.: Diophantine m-tuples for quadratic polynomials, Glas. Mat. Ser. III 46 (2011), 283–309.10.3336/gm.46.2.02Suche in Google Scholar

[25] Mohanty, S. P.—Ramasamy, A. M. S.: On Pr,k sequences, Fibonacci Quart. 23 (1985), 36–44.10.1080/00150517.1985.12429852Suche in Google Scholar

Received: 2023-12-06
Accepted: 2024-01-29
Published Online: 2024-08-14
Published in Print: 2024-08-27

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0063/pdf
Button zum nach oben scrollen