Startseite Mathematik Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Coercive and noncoercive elliptic problems with variable exponent Laplacian under Robin boundary conditions

  • Makkia Dammak und Abir Amor Ben Ali EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper, we study the existence as well as the non-existence of some positive solutions for the equation −Δp(x) u = λ k(x) uq ± h(x) ur under Robin boundary condition in a regular open bounded domain Ω of ℝN, N ≥ 2. Δp(x) is the p(x)-Laplacian operator where pC1(Ω) and p > 1. Our proofs are based on the sub solution-super solution method and also on variational arguments.

  1. (Communicated by Alberto Lastra)

[1] Alsaedi, A.—Ahmad, B.: Anisotropic problems with unbalanced growth, Adv. Nonlinear Anal. 9 (2020), 1504–1515.10.1515/anona-2020-0063Suche in Google Scholar

[2] Chandrasekhar, S.: An Introduction to the Study of Stellar Structure, Dover Books on Astronomy, 1985.Suche in Google Scholar

[3] Deng, S. G.: Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl. 360 (2009), 548–560.10.1016/j.jmaa.2009.06.032Suche in Google Scholar

[4] Deng, S. G.—Wang, Q.—Cheng, S.: On the p(x)-Laplacian Robin eigenvalue problem, Appl. Math. Comput. 15(17) (2011), 5643–5649.10.1016/j.amc.2010.12.042Suche in Google Scholar

[5] Fan, X. L.—Zhao, D: On the spaces Wk,p(x)(Ω) and Lp(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424–446.10.1006/jmaa.2000.7617Suche in Google Scholar

[6] Gelfand, I. M.: Some problems in the theory of quasi-linear equations, Section 15, due to G. I. Barenblatt, Amer. Math. Soc. Transl. 29 (1963), 295–381. Russian original: Uspekhi Mat. Nauk 14 (1959), 87–158.10.1090/trans2/029/12Suche in Google Scholar

[7] Joseph, D.—Sparrow, E. M.: Nonlinear diffusion induced by nonlinear sources, Quart. Appl. Math. 28 (1970), 327–342.10.1090/qam/272272Suche in Google Scholar

[8] Kefi, K.: On the robin problem with indefinite weight in Sobolev spaces with variable exponent, Z. Anal. Anwend. 37(1) (2018).10.4171/ZAA/1600Suche in Google Scholar

[9] Keller, H. B.—Cohen, D. S.: Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361–1376.10.1512/iumj.1967.16.16087Suche in Google Scholar

[10] Kováčik, O.—Rákosník, J.: On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), 592–628.10.21136/CMJ.1991.102493Suche in Google Scholar

[11] Mottin, S.: An analytical solution of the Laplace equation with Robin conditions by applying Legendre transform, Integral Transforms Spec. Funct. 27(4) (2016), 289–306.10.1080/10652469.2015.1121255Suche in Google Scholar

[12] Mingione, G.—Rădulescu, V.: Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501(1) (2021), 125–197.10.1016/j.jmaa.2021.125197Suche in Google Scholar

[13] Orlicz, W.: Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.10.4064/sm-3-1-200-211Suche in Google Scholar

[14] Otared, K.: Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Paris, Berlin, Heidelbreg etc., Springer-Verlag, 1993.Suche in Google Scholar

[15] Rădulescu, V.—Repovš, D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012), 1524–1530.10.1016/j.na.2011.01.037Suche in Google Scholar

[16] Rădulescu, V. D.—Repovš, D. D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015.Suche in Google Scholar

[17] Ragusa, M. A.—Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9(1) (2020), 710–728.10.1515/anona-2020-0022Suche in Google Scholar

[18] Saoudi, K.: Existence and nonexistence of positive solutions for quasilinear elliptic problem, Abstract Appl. Anal. (2012), Art. ID 275748.10.1155/2012/275748Suche in Google Scholar

[19] Shi, X.—Rădulescu, V. D.—Repovš, D. D.—Zhang, Q.: Multiple solutions of double phase variational problems with variable exponent, Adv. Calc. Var. 13(4) (2020), 385–401.10.1515/acv-2018-0003Suche in Google Scholar

Received: 2021-04-29
Accepted: 2021-12-07
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0105/pdf?lang=de
Button zum nach oben scrollen