Home Mathematics Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators
Article
Licensed
Unlicensed Requires Authentication

Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators

  • Pintu Bhunia , Raj Kumar Nayak and Kallol Paul EMAIL logo
Published/Copyright: August 9, 2022
Become an author with De Gruyter Brill

Abstract

Let 𝓗 be a complex Hilbert space and A be a non-zero positive bounded linear operator on 𝓗. The main aim of this paper is to discuss a general method to develop A-operator seminorm and A-numerical radius inequalities of semi-Hilbertian space operators using the existing corresponding inequalities of bounded linear operators on 𝓗. Among many other inequalities we prove that if S, T, X𝓑A(𝓗), i.e., if A-adjoint of S, T, X exist, then

2SAXTASSAX+XTTAA.

Further, we prove that if T𝓑A(𝓗), then

14TAT+TTAA18(T+TAA2+TTAA2)18(T+TAA2+TTAA2)+18cA2(T+TA)+18cA2(TTA)wA2(T).

Here wA(⋅), cA(⋅) and ∥⋅∥A denote A-numerical radius, A-Crawford number and A-operator seminorm, respectively.

  1. ( Communicated by Michal Zajac )

References

[1] ARIAS, M. L.—CORACH, G.—GONZALEZ, M. C.: Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75 (2009), 635–653.Search in Google Scholar

[2] ARIAS, M. L.—CORACH, G.—GONZALEZ, M. C.: Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008), 1460–1475.10.1016/j.laa.2007.09.031Search in Google Scholar

[3] BAG, S.—BHUNIA, P.—PAUL, K.: Bounds of numerical radius of bounded linear operator using t-Aluthge transform, Math. Inequal. Appl. 23(3) (2020), 991–1004.10.7153/mia-2020-23-76Search in Google Scholar

[4] BHATIA, R.—DAVIS, C.: More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1993), 132–136.10.1137/0614012Search in Google Scholar

[5] BHUNIA, P.—FEKI, K.—PAUL, K.: A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iranian Math. Soc. 47 (2021), 435–457.10.1007/s41980-020-00392-8Search in Google Scholar

[6] BHUNIA, P.—NAYAK, R. K.—PAUL, K.: Improvement of A-numerical radius inequalities of semi-Hilbertian space operators, Results Math. 76 (2021), Art. No. 120.10.1007/s00025-021-01439-wSearch in Google Scholar

[7] BHUNIA, P.—NAYAK, R. K.—PAUL, K.: Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (2020), 1498–1511.10.1007/s43036-020-00056-8Search in Google Scholar

[8] BHUNIA, P.—PAUL, K.: Refinements of norm and numerical radius inequalities, Rocky Mountain J. Math. 51(6) (2021), 1953–1965.10.1216/rmj.2021.51.1953Search in Google Scholar

[9] BHUNIA, P.—PAUL, K.: Furtherance of numerical radius inequalities of Hilbert space operators, Arch. Math. 117(5) (2021), 537–546.10.1007/s00013-021-01641-wSearch in Google Scholar

[10] BHUNIA, P.—PAUL, K.: Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra 70(10) (2022), 1995–2013.10.1080/03081087.2020.1781037Search in Google Scholar

[11] BHUNIA, P.—PAUL, K.—NAYAK, R. K.: On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36 (2020), 143–157.Search in Google Scholar

[12] BRANGES, L. D.—ROVNYAK, J.: Square Summable Power Series, New York, Holt, Rinehart and Winston, 1966.Search in Google Scholar

[13] DOUGLAS, R. G.: On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–416.10.1090/S0002-9939-1966-0203464-1Search in Google Scholar

[14] DRAGOMIR, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5(18) (2009), 269–278.10.5644/SJM.05.2.10Search in Google Scholar

[15] FEKI, K.: Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11 (2020), 929–946.10.1007/s43034-020-00064-ySearch in Google Scholar

[16] FEKI, K.: A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (2020), 535–544.10.1007/s00013-020-01482-zSearch in Google Scholar

[17] FEKI, K.: On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603 (2020), 313–328.10.1016/j.laa.2020.06.015Search in Google Scholar

[18] GONZALEZ, M. C.: Operator norm inequalities in semi-Hilbertian spaces, Linear Algebra Appl. 434 (2011), 370–378.10.1016/j.laa.2010.08.034Search in Google Scholar

[19] MAJDAK, M.—SECELEAN, N. A.—SUCIU, L.: Ergodic properties of operators in some semi-Hilbertian spaces, Linear Multilinear Algebra 61(2) (2013), 139–159.10.1080/03081087.2012.667094Search in Google Scholar

[20] MANUILOV, V.—MOSLEHIAN, M. S.—XU, Q.: Douglas factorization theorem revisited, Proc. Amer. Math. Soc. 148 (2020), 1139–1151.10.1090/proc/14757Search in Google Scholar

[21] MOSLEHIAN, M. S.—KIAN, M.—XU, Q.: Positivity of 2 × 2 block matrices of operators, Banach J. Math. Anal. 13(3) (2019), 726–743.10.1215/17358787-2019-0019Search in Google Scholar

[22] MOSLEHIAN, M. S.—XU, Q.—ZAMANI, A.: Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591 (2020), 299–321.10.1016/j.laa.2020.01.015Search in Google Scholar

[23] ROUT, N. C.—SAHOO, S.—MISHRA, D.: Some A-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra 69(5) (2021), 980–996.10.1080/03081087.2020.1774487Search in Google Scholar

[24] ZAMANI, A.: A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159–183.10.1016/j.laa.2019.05.012Search in Google Scholar

Received: 2021-05-20
Accepted: 2021-08-16
Published Online: 2022-08-09
Published in Print: 2022-08-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0067/pdf
Scroll to top button