Startseite Mathematik Herglotz's theorem for Jacobi-Dunkl positive definite sequences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Herglotz's theorem for Jacobi-Dunkl positive definite sequences

  • Frej Chouchene EMAIL logo und Iness Haouala
Veröffentlicht/Copyright: 8. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, we introduce the notion of Jacobi-Dunkl positive definite sequences using the properties of the discrete Jacobi-Dunkl translation. Then, we establish the analogous of Herglotz’s theorem to characterize these sequences.

  1. (Communicated by Tomasz Natkaniec)

Acknowledgement

Thanks to the referees for careful readings and helpful comments and suggestions.

References

[1] Bloom, W. R.—Heyer, H.: Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter, Berlin, 1995.10.1515/9783110877595Suche in Google Scholar

[2] Chouchene, F.: Harmonic analysis associated with the Jacobi-Dunkl operator on ]− π2,π2[, J. Comput. Appl. Math. 178 (2005), 75–89.10.1016/j.cam.2004.02.025Suche in Google Scholar

[3] Chouchene, F.: Bounds, asymptotic behavior and recurrence relations for the Jacobi-Dunkl polynomials, International Journal of Open Problems Complex Analysis 6(1) (2014), 49–77.10.12816/0006030Suche in Google Scholar

[4] Chouchene, F.: Recurrence and Christoffel-Darboux formulas for the Jacobi-Dunkl polynomials and applications, Commun. Math. Anal. 16(1) (2014), 123–142.Suche in Google Scholar

[5] Einsiedler, M.—Ward, T.: Functional analysis, spectral theory, and applications. Grad. Texts in Math. 276, Springer International Publishing AG, 2017.10.1007/978-3-319-58540-6Suche in Google Scholar

[6] Grenander, U.—Szegö, G.: Toeplitz Forms and their Applications. California Monographs in Mathematical Sciences, University of California Press, Berkeley, 1958.Suche in Google Scholar

[7] Helson, H.: Harmonic Analysis, The Wadsworth & Brooks/ Cole Advanced Books & Software, Addision-Wesley, 1983, reprinted by Wadsworth, 1991.Suche in Google Scholar

[8] Li, Zh.-k.: Hardy spaces for Jacobi expansions. I. The basic theory, Analysis 16(1) (1996), 27–49.10.1524/anly.1996.16.1.27Suche in Google Scholar

[9] Li, Zh.-k.: Conjugate Jacobi series and conjugate functions, J. Approx. Theory 86(2) (1996), 179–196.10.1006/jath.1996.0061Suche in Google Scholar

[10] Li, Zh.-k.—LIU, L.-M.: Uncertainty principles for Jacobi expansions, J. Math. Anal. Appl. 286(2) (2003), 652–663.10.1016/S0022-247X(03)00507-9Suche in Google Scholar

[11] Li, Zh.-k.—ZHU, Zh.-h.: Characterizations of smoothness of functions in terms of the basis conjugate to Jacobi polynomials, J. Approx. Theory 160(1–2) (2009), 113–134.10.1016/j.jat.2008.03.006Suche in Google Scholar

[12] Li, Zh.-k.—Liao, J.-Q.: Hardy spaces for Dunkl-Gegenbauer expansions, J. Funct. Anal. 265(5) (2013), 687–742.10.1016/j.jfa.2013.05.024Suche in Google Scholar

[13] Rösler, M.: Trigonometric convolution structures on ℤ derived from Jacobi polynomials, J. Comp. Appl. Math. 65 (1995), 357–368.10.1016/0377-0427(95)00122-0Suche in Google Scholar

[14] Rudin, W.: Real and Complex Analysis, 3rd ed., McGraw-Hill Higher Education, 1986.Suche in Google Scholar

[15] Sunder, V. S.: The Riesz representation theorem, Indian J. Pure Appl. Math. 39(6) (2008), 467–481.Suche in Google Scholar

[16] Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Pub., Vol. 23, Amer. Math. Soc. Providence, R.I., 1975.Suche in Google Scholar

Received: 2019-10-11
Accepted: 2020-06-22
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0011/pdf
Button zum nach oben scrollen