Abstract
We introduce the notion of the fuzzy McShane integral in the linear topology sense and we discuse its relation with the fuzzy Pettis integral introduced recently by Chun-Kee Park in [On the Pettis integral of fuzzy mappings in Banach spaces, Commun. Korean Math. Soc. 22 (2007), 535–545].
(Communicated by Anatolij Dvurečenskij)
Acknowledgement
The author is grateful to the anonymous reviewers for their valuable remarks.
References
[1] Aliprantis, C. D.—Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed., Springer, 2006.Suche in Google Scholar
[2] Aliprantis, C. D.—Burkinshow, O.: Positive operators, Springer, 2006.10.1007/978-1-4020-5008-4Suche in Google Scholar
[3] El Amri, K.—Hess, C.: On The Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329–360.10.1023/A:1026547222209Suche in Google Scholar
[4] Avilés, A.—Plebanek, G.—Rodríguez, J.: The McShane integral in weakly compactly generated spaces, J. Funct. Anal. 259(11) (2010), 2776–2792.10.1016/j.jfa.2010.08.007Suche in Google Scholar
[5] Beer, G.: Topologies on Closed and Closed Convex Sets, Kluwer Academic Publischers, Dordrech, Boston, London, 1993.10.1007/978-94-015-8149-3Suche in Google Scholar
[6] Bongiorno, B.—Di Piazza, L.—Musiał, K.: A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets and Systems 200 (2012), 36–47.10.1016/j.fss.2011.12.006Suche in Google Scholar
[7] Candeloro, D.—Di Piazza, L.—Musiał, K.—Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions, J. Math. Anal. Appl. 441 (2016), 293–308.10.1016/j.jmaa.2016.04.009Suche in Google Scholar
[8] Candeloro, D.—Di Piazza, L.—Musiał, K.—Sambucini, A. R.: Relations among Gauge and Pettis integrals for multifunctions with compact convex values, Ann. Mat. Pura Appl. 197 (2018), 171–183.10.1007/s10231-017-0674-zSuche in Google Scholar
[9] Caponetti, D.—Marraffa, V.—Naralenkov, K.: On the integration of Riemann-measurable vectoe-valued functions, Monatsh. Math. 182 (2017), 513–536.10.1007/s00605-016-0923-zSuche in Google Scholar
[10] Cascales, C.—Kadets, V.—Rodríguez, J.: The Pettis integral for multi-valued functions via single ones, J. Math. Anal. Appl. 332(1) (2007), 1–10.10.1016/j.jmaa.2006.10.003Suche in Google Scholar
[11] Castaing, C.: Quelques résultats de convergence des suites adaptées, Acta Math. Vietnam. 14(1) (1989), 51–66.Suche in Google Scholar
[12] Castaing, C.—Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. 580, Springer, 1977.10.1007/BFb0087685Suche in Google Scholar
[13] Congxin, W.—Zengtai, G.: On the Henstock integrals of fuzzy-valued functions (I), Fuzzy Sets and Systems 120 (2001), 523–532.10.1016/S0165-0114(99)00057-3Suche in Google Scholar
[14] Deville, R.—Rodríguez, J.: Integration in Hilbert Generated Banach spaces, Israel J. Math. 177 (2010), 285–306.10.1007/s11856-010-0047-4Suche in Google Scholar
[15] Diestel, J.—Uhl Jr., J. J.: Vector Measures. Math. Surveys Monogr. 15, AMS, 1977.10.1090/surv/015Suche in Google Scholar
[16] Di Piazza, L.—Musiał, K.: Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167–179.10.1007/s11228-004-0934-0Suche in Google Scholar
[17] Di Piazza, L.—Musiał, K.: A decomposition theorem for compact-valued Henstock integral, Monatsh. Math. 1482 (2006), 119–126.10.1007/s00605-005-0376-2Suche in Google Scholar
[18] Di Piazza, L.—Musiał, K.: Decomposition of weakly compact valued integrable multifunctions, ∑ Mathematics 8 (2020), Art. 836.10.3390/math8060863Suche in Google Scholar
[19] Di Piazza, L.—Marraffa, V.: Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces, Math. Slovaca 67(6) (2017), 1359–1370.10.1515/ms-2017-0057Suche in Google Scholar
[20] Di Piazza, L.—Preiss, D.: When do McShane and Pettis integrals coincide, Illinois J. Math. 47(4) (2003), 1177–1187.10.1215/ijm/1258138098Suche in Google Scholar
[21] Fremlin, D. H.: The generalzed McShane integral, Illinois J. Math. 39(1) (1995), 39–67.10.1215/ijm/1255986628Suche in Google Scholar
[22] Fremlin, D. H.: The Henstock and McShane integrals of vector-valued function, Illinois J. Math. 38(3) (1994), 471–479.10.1215/ijm/1255986726Suche in Google Scholar
[23] Fremlin, D. H.—Mendoza, J.: On the integration of vector-valued functions, Illinois J. Math. 38(1) (1994), 127–147.10.1215/ijm/1255986891Suche in Google Scholar
[24] Gordon, R. A.: The McShane integral of Banach-valued functions, Illinois J. Math. 34(3) (1990), 557–567.10.1215/ijm/1255988170Suche in Google Scholar
[25] Gordon, R. A.: The integrals of Lebesgue, Denjoy, Perron, and Henstock. Grad. Stud. Math. 4, AMS, Providence, R.I., 1994.10.1090/gsm/004Suche in Google Scholar
[26] Hess, C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153(1) (1990), 226–249.10.1016/0022-247X(90)90275-KSuche in Google Scholar
[27] Hess, C.—Ziat, H.: Théorème de Komlós pour les multifonctions intégrables au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181–198.Suche in Google Scholar
[28] Kurzweil, J.—Schwabik, S.: On McShane integrability of Banach space-valued functions, Real. Anal. Exchange 92(2) (2003–2004), 763–780.10.14321/realanalexch.29.2.0763Suche in Google Scholar
[29] Lamei, S.—Li, G.: Strong laws of large numbers for fuzzy set-valued Random variables in Gα space, Adv. Pure Math. 6 (2016), 583–592.10.4236/apm.2016.69047Suche in Google Scholar
[30] Musiał, K.: Topics in the theory of Pettis integration. In: School of Measure Theory and Real Analysis, Italy, May 1992.Suche in Google Scholar
[31] Musiał, K.: A decomposition theorem for Banach space valued fuzzy Henstock integral, Fuzzy Sets and Systems 259 (2015), 21–28.10.1016/j.fss.2014.03.012Suche in Google Scholar
[32] Neveu, J.: Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.Suche in Google Scholar
[33] Park, C. K: On the Pettis integral of fuzzy mappings in Banach spaces, Commun. Korean Math. Soc. 22 (2007), 535–545.10.4134/CKMS.2007.22.4.535Suche in Google Scholar
[34] Reynolds, R.—Swartz, C: The Vitali convergence theorem for the vector-valued McShane integral, Math. Bohem. 129(2) (2004), 159–176.10.21136/MB.2004.133906Suche in Google Scholar
[35] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces, J. Math. Anal. Appl. 341 (2008), 80–90.10.1016/j.jmaa.2007.10.017Suche in Google Scholar
[36] Schwabik, S.—Ye, G.: On the strong McShane integral of functions with values in a Banach space, Czechoslovak Math. J. 51(126) (2001), 819–830.10.1023/A:1013721114330Suche in Google Scholar
[37] Sayyad, R.: The weak integral by partitions of unity, Real Anal. Exchange 44(1) (2019), 181–198.10.14321/realanalexch.44.1.0181Suche in Google Scholar
[38] Sayyad, R.: The multiplier for the weak McShane integral, Math. Bohem. 144(1) (2019), 13–24.10.21136/MB.2018.0044-17Suche in Google Scholar
[39] Sayyad, R.: The McShane integral in the limit, Real Anal. Exchange 42(2) (2017), 283–310.10.14321/realanalexch.42.2.0283Suche in Google Scholar
[40] Sayyad, R.: Contribution à l’étude des Intégrales de McShane et de Henstock Vectorielles et Multivoques. Thèse de doctorat, Agadir, 2014.Suche in Google Scholar
[41] Sonntag, Y.—Zălinescu, C.: Scalar convergence of convex sets, JMAA 164 (1992), 219–241.10.1016/0022-247X(92)90154-6Suche in Google Scholar
[42] Wu, J.—Wu, C.: The w-derivatives of fuzzy mapping in Banach spaces, Fuzzy Sets and Systems 119 (2001), 375–381.10.1016/S0165-0114(98)00468-0Suche in Google Scholar
[43] Xue, X.—Ma, M.: Random fuzzy number integrals in Banach spaces, Fuzzy Sets and Systems 66 (1994), 97–111.10.1016/0165-0114(94)90303-4Suche in Google Scholar
[44] Xue, X.—Wu, C.: On the extension of fuzzy number measures in Banach spaces. Part I. Representation of fuzzy number measures, Fuzzy Sets and Systems 78 (1996), 347–354.10.1016/0165-0114(96)84616-1Suche in Google Scholar
[45] Ziat, H.: Convergence theorems for Pettis integrable multifunctions, Bull. Pol. Acad. Sci. Math. 45 (1997), 123–137.Suche in Google Scholar
[46] Ziat, H.: On characterisation of Pettis integrable multifunctions, Bull. Pol. Acad. Sci. Math. 44 (2000), 227–230.Suche in Google Scholar
© 2021 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- Regular papers
- Properties of implication in effect algebras
- On a nonlinear relation for computing the overpartition function
- Six-cycle systems
- Representation of bifinite domains by BF-closure spaces
- L-fuzzy cosets in universal algebras
- Density of sets with missing differences and applications
- Degree of independence of numbers
- A generalization of a result on the sum of element orders of a finite group
- A New fuzzy McShane integrability
- Hankel determinants of second and third order for the class 𝓢 of univalent functions
- Herglotz's theorem for Jacobi-Dunkl positive definite sequences
- Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind
- Existence on solutions of a class of casual differential equations on a time scale
- On a general system of difference equations defined by homogeneous functions
- Jordan amenability of banach algebras
- A new notion of orthogonality involving area and length
- Reeb flow invariant ∗-Ricci operators on trans-Sasakian three-manifolds
- A finite graph is homeomorphic to the Reeb graph of a Morse–Bott function
- On first countable quasitopological homotopy groups
Artikel in diesem Heft
- Regular papers
- Properties of implication in effect algebras
- On a nonlinear relation for computing the overpartition function
- Six-cycle systems
- Representation of bifinite domains by BF-closure spaces
- L-fuzzy cosets in universal algebras
- Density of sets with missing differences and applications
- Degree of independence of numbers
- A generalization of a result on the sum of element orders of a finite group
- A New fuzzy McShane integrability
- Hankel determinants of second and third order for the class 𝓢 of univalent functions
- Herglotz's theorem for Jacobi-Dunkl positive definite sequences
- Functional inequalities for Gaussian hypergeometric function and generalized elliptic integral of the first kind
- Existence on solutions of a class of casual differential equations on a time scale
- On a general system of difference equations defined by homogeneous functions
- Jordan amenability of banach algebras
- A new notion of orthogonality involving area and length
- Reeb flow invariant ∗-Ricci operators on trans-Sasakian three-manifolds
- A finite graph is homeomorphic to the Reeb graph of a Morse–Bott function
- On first countable quasitopological homotopy groups