Startseite A New fuzzy McShane integrability
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A New fuzzy McShane integrability

  • Redouane Sayyad EMAIL logo
Veröffentlicht/Copyright: 8. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce the notion of the fuzzy McShane integral in the linear topology sense and we discuse its relation with the fuzzy Pettis integral introduced recently by Chun-Kee Park in [On the Pettis integral of fuzzy mappings in Banach spaces, Commun. Korean Math. Soc. 22 (2007), 535–545].

  1. (Communicated by Anatolij Dvurečenskij)

Acknowledgement

The author is grateful to the anonymous reviewers for their valuable remarks.

References

[1] Aliprantis, C. D.—Border, K. C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed., Springer, 2006.Suche in Google Scholar

[2] Aliprantis, C. D.—Burkinshow, O.: Positive operators, Springer, 2006.10.1007/978-1-4020-5008-4Suche in Google Scholar

[3] El Amri, K.—Hess, C.: On The Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329–360.10.1023/A:1026547222209Suche in Google Scholar

[4] Avilés, A.—Plebanek, G.—Rodríguez, J.: The McShane integral in weakly compactly generated spaces, J. Funct. Anal. 259(11) (2010), 2776–2792.10.1016/j.jfa.2010.08.007Suche in Google Scholar

[5] Beer, G.: Topologies on Closed and Closed Convex Sets, Kluwer Academic Publischers, Dordrech, Boston, London, 1993.10.1007/978-94-015-8149-3Suche in Google Scholar

[6] Bongiorno, B.—Di Piazza, L.—Musiał, K.: A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets and Systems 200 (2012), 36–47.10.1016/j.fss.2011.12.006Suche in Google Scholar

[7] Candeloro, D.—Di Piazza, L.—Musiał, K.—Sambucini, A. R.: Gauge integrals and selections of weakly compact valued multifunctions, J. Math. Anal. Appl. 441 (2016), 293–308.10.1016/j.jmaa.2016.04.009Suche in Google Scholar

[8] Candeloro, D.—Di Piazza, L.—Musiał, K.—Sambucini, A. R.: Relations among Gauge and Pettis integrals for multifunctions with compact convex values, Ann. Mat. Pura Appl. 197 (2018), 171–183.10.1007/s10231-017-0674-zSuche in Google Scholar

[9] Caponetti, D.—Marraffa, V.—Naralenkov, K.: On the integration of Riemann-measurable vectoe-valued functions, Monatsh. Math. 182 (2017), 513–536.10.1007/s00605-016-0923-zSuche in Google Scholar

[10] Cascales, C.—Kadets, V.—Rodríguez, J.: The Pettis integral for multi-valued functions via single ones, J. Math. Anal. Appl. 332(1) (2007), 1–10.10.1016/j.jmaa.2006.10.003Suche in Google Scholar

[11] Castaing, C.: Quelques résultats de convergence des suites adaptées, Acta Math. Vietnam. 14(1) (1989), 51–66.Suche in Google Scholar

[12] Castaing, C.—Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math. 580, Springer, 1977.10.1007/BFb0087685Suche in Google Scholar

[13] Congxin, W.—Zengtai, G.: On the Henstock integrals of fuzzy-valued functions (I), Fuzzy Sets and Systems 120 (2001), 523–532.10.1016/S0165-0114(99)00057-3Suche in Google Scholar

[14] Deville, R.—Rodríguez, J.: Integration in Hilbert Generated Banach spaces, Israel J. Math. 177 (2010), 285–306.10.1007/s11856-010-0047-4Suche in Google Scholar

[15] Diestel, J.—Uhl Jr., J. J.: Vector Measures. Math. Surveys Monogr. 15, AMS, 1977.10.1090/surv/015Suche in Google Scholar

[16] Di Piazza, L.—Musiał, K.: Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167–179.10.1007/s11228-004-0934-0Suche in Google Scholar

[17] Di Piazza, L.—Musiał, K.: A decomposition theorem for compact-valued Henstock integral, Monatsh. Math. 1482 (2006), 119–126.10.1007/s00605-005-0376-2Suche in Google Scholar

[18] Di Piazza, L.—Musiał, K.: Decomposition of weakly compact valued integrable multifunctions, ∑ Mathematics 8 (2020), Art. 836.10.3390/math8060863Suche in Google Scholar

[19] Di Piazza, L.—Marraffa, V.: Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces, Math. Slovaca 67(6) (2017), 1359–1370.10.1515/ms-2017-0057Suche in Google Scholar

[20] Di Piazza, L.—Preiss, D.: When do McShane and Pettis integrals coincide, Illinois J. Math. 47(4) (2003), 1177–1187.10.1215/ijm/1258138098Suche in Google Scholar

[21] Fremlin, D. H.: The generalzed McShane integral, Illinois J. Math. 39(1) (1995), 39–67.10.1215/ijm/1255986628Suche in Google Scholar

[22] Fremlin, D. H.: The Henstock and McShane integrals of vector-valued function, Illinois J. Math. 38(3) (1994), 471–479.10.1215/ijm/1255986726Suche in Google Scholar

[23] Fremlin, D. H.—Mendoza, J.: On the integration of vector-valued functions, Illinois J. Math. 38(1) (1994), 127–147.10.1215/ijm/1255986891Suche in Google Scholar

[24] Gordon, R. A.: The McShane integral of Banach-valued functions, Illinois J. Math. 34(3) (1990), 557–567.10.1215/ijm/1255988170Suche in Google Scholar

[25] Gordon, R. A.: The integrals of Lebesgue, Denjoy, Perron, and Henstock. Grad. Stud. Math. 4, AMS, Providence, R.I., 1994.10.1090/gsm/004Suche in Google Scholar

[26] Hess, C.: Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153(1) (1990), 226–249.10.1016/0022-247X(90)90275-KSuche in Google Scholar

[27] Hess, C.—Ziat, H.: Théorème de Komlós pour les multifonctions intégrables au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181–198.Suche in Google Scholar

[28] Kurzweil, J.—Schwabik, S.: On McShane integrability of Banach space-valued functions, Real. Anal. Exchange 92(2) (2003–2004), 763–780.10.14321/realanalexch.29.2.0763Suche in Google Scholar

[29] Lamei, S.—Li, G.: Strong laws of large numbers for fuzzy set-valued Random variables in Gα space, Adv. Pure Math. 6 (2016), 583–592.10.4236/apm.2016.69047Suche in Google Scholar

[30] Musiał, K.: Topics in the theory of Pettis integration. In: School of Measure Theory and Real Analysis, Italy, May 1992.Suche in Google Scholar

[31] Musiał, K.: A decomposition theorem for Banach space valued fuzzy Henstock integral, Fuzzy Sets and Systems 259 (2015), 21–28.10.1016/j.fss.2014.03.012Suche in Google Scholar

[32] Neveu, J.: Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.Suche in Google Scholar

[33] Park, C. K: On the Pettis integral of fuzzy mappings in Banach spaces, Commun. Korean Math. Soc. 22 (2007), 535–545.10.4134/CKMS.2007.22.4.535Suche in Google Scholar

[34] Reynolds, R.—Swartz, C: The Vitali convergence theorem for the vector-valued McShane integral, Math. Bohem. 129(2) (2004), 159–176.10.21136/MB.2004.133906Suche in Google Scholar

[35] Rodríguez, J.: On the equivalence of McShane and Pettis integrability in non-separable Banach spaces, J. Math. Anal. Appl. 341 (2008), 80–90.10.1016/j.jmaa.2007.10.017Suche in Google Scholar

[36] Schwabik, S.—Ye, G.: On the strong McShane integral of functions with values in a Banach space, Czechoslovak Math. J. 51(126) (2001), 819–830.10.1023/A:1013721114330Suche in Google Scholar

[37] Sayyad, R.: The weak integral by partitions of unity, Real Anal. Exchange 44(1) (2019), 181–198.10.14321/realanalexch.44.1.0181Suche in Google Scholar

[38] Sayyad, R.: The multiplier for the weak McShane integral, Math. Bohem. 144(1) (2019), 13–24.10.21136/MB.2018.0044-17Suche in Google Scholar

[39] Sayyad, R.: The McShane integral in the limit, Real Anal. Exchange 42(2) (2017), 283–310.10.14321/realanalexch.42.2.0283Suche in Google Scholar

[40] Sayyad, R.: Contribution à l’étude des Intégrales de McShane et de Henstock Vectorielles et Multivoques. Thèse de doctorat, Agadir, 2014.Suche in Google Scholar

[41] Sonntag, Y.—Zălinescu, C.: Scalar convergence of convex sets, JMAA 164 (1992), 219–241.10.1016/0022-247X(92)90154-6Suche in Google Scholar

[42] Wu, J.—Wu, C.: The w-derivatives of fuzzy mapping in Banach spaces, Fuzzy Sets and Systems 119 (2001), 375–381.10.1016/S0165-0114(98)00468-0Suche in Google Scholar

[43] Xue, X.—Ma, M.: Random fuzzy number integrals in Banach spaces, Fuzzy Sets and Systems 66 (1994), 97–111.10.1016/0165-0114(94)90303-4Suche in Google Scholar

[44] Xue, X.—Wu, C.: On the extension of fuzzy number measures in Banach spaces. Part I. Representation of fuzzy number measures, Fuzzy Sets and Systems 78 (1996), 347–354.10.1016/0165-0114(96)84616-1Suche in Google Scholar

[45] Ziat, H.: Convergence theorems for Pettis integrable multifunctions, Bull. Pol. Acad. Sci. Math. 45 (1997), 123–137.Suche in Google Scholar

[46] Ziat, H.: On characterisation of Pettis integrable multifunctions, Bull. Pol. Acad. Sci. Math. 44 (2000), 227–230.Suche in Google Scholar

Received: 2020-06-22
Accepted: 2020-07-21
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0009/pdf
Button zum nach oben scrollen