Abstract
For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology.
A Menger space is a topological space in which for every sequence of open covers 𝓤1, 𝓤2, … of the space there are finite sets 𝓕1 ⊂ 𝓤1, 𝓕2 ⊂ 𝓤2, … such that family 𝓕1 ∪ 𝓕2 ∪ … covers the space.
In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that
Cλ(X) is Menger if and only if Cλ(X) is σ-compact;
Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X.
(Communicated by David Buhagiar)
References
[1] Arhangel’skii, A. V.: Continuous maps, factorization theorems, and function spaces, Trudy Moskovsk. Mat. Obshch. 47 (1984), 3–21.Search in Google Scholar
[2] Arhangel’skii, A. V.: Hurewicz spaces, analytic sets and fan tightness of function spaces, Sov. Math. Dokl. 33 (1986), 396–399.Search in Google Scholar
[3] Arhangel’skii, A. V.: Projective σ-compactness, ω1-caliber, andCp-spaces, Topology Appl. 157 (2000), 874–893.10.1016/S0166-8641(99)00011-5Search in Google Scholar
[4] Arhangel’skii, A. V.—Ponomarev, V. I.: Fundamentals of General Topology: Problems and Excercises, Reidel, 1984. (Translated from the Russian.)Search in Google Scholar
[5] Bonanzinga, M.—Cammaroto, F.—Matveev, M.: Projective versions of selection principles, Topology Appl. 157 (2010), 874–893.10.1016/j.topol.2009.12.004Search in Google Scholar
[6] Duanmu, H.—Tall, F. D.—Zdomskyy, L., Productively Lindelöf and indestructibly Lindelöf spaces, Topology Appl. 160(18) (2013), 2443–2453.10.1016/j.topol.2013.07.038Search in Google Scholar
[7] Engelking, R.: General Topology, PWN, Warsaw, 1977; Mir, Moscow, 1986.Search in Google Scholar
[8] Gillman, L.—Jerison, M.: Rings of Continuous Functions. The University Series in Higher Mathematics, Princeton, New Jersey: D. Van Nostrand Co., Inc., 1960.10.1007/978-1-4615-7819-2Search in Google Scholar
[9] Hurewicz, W.: Über eine verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.10.1007/BF01216792Search in Google Scholar
[10] Hurewicz, W.: Über folger stetiger Funktionen, Fund. Math. 9 (1927), 193–204.10.4064/fm-9-1-193-210Search in Google Scholar
[11] Kočinac, LJ. D. R.: Selection principles and continuous images, Cubo Math.J. 8(2) (2006), 23–31.Search in Google Scholar
[12] Menger, K.: Einige Überdeckungssätze der Punktmengenlehre, Sizungsberichte der Wiener Akademie 133 (1924), 421–444.10.1007/978-3-7091-6110-4_14Search in Google Scholar
[13] Miller, A. W.—Fremlin, D. H.: On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.10.4064/fm-129-1-17-33Search in Google Scholar
[14] Nokhrin, S. E.: Some properties of set-open topologies, J. Math. Sci. 144(3) (2007), 4123–4151.10.1007/s10958-007-0258-3Search in Google Scholar
[15] Osipov, A. V.—Pytkeev, E. G.: On the σ-countable compactness of spaces of continuous functions with the set-open topology, Proc. Steklov Inst. Math. 285(1) (2014), 153–162.10.1134/S0081543814050174Search in Google Scholar
[16] Osipov, A. V.: Topological-algebraic properties of function spaces with set-open topologies, Topology Appl. 159(3) (2012), 800–805.10.1016/j.topol.2011.11.049Search in Google Scholar
[17] Osipov, A. V.: Group structures of a function spaces with the set-open topology, Sib. Élektron. Mat. Izv. 14 (2017), 1440–1446.Search in Google Scholar
[18] Osipov, A. V.: The C-compact-open topology on function spaces, Topology Appl. 159(13) (2012), 3059–3066.10.1016/j.topol.2012.05.018Search in Google Scholar
[19] Sakai, M.: The projective Menger property and an embedding of Sω into function spaces, Topology Appl. 220 (2017), 118–130.10.1016/j.topol.2017.02.017Search in Google Scholar
[20] Sakai, M.—Scheepers, M.: The combinatorics of open covers. In: Recent Progress in General Topology III (K. P. Hart, J. van Mill, P. Simon, eds.), Atlantic Press, 2014, pp. 751–799.10.2991/978-94-6239-024-9_18Search in Google Scholar
[21] Shahmatov, D. B.: A pseudocompact Tychonoff space all countable subsets of which are closed and C*-embedded, Topology Appl. 22(2) (1986), 139–144.10.1016/0166-8641(86)90004-0Search in Google Scholar
[22] Tall, F. D.: Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl. 158(18) (2011), 2556–2563.10.1016/j.topol.2011.08.015Search in Google Scholar
[23] Tall, F. D.: Productively Lindelöf spaces may all be D, Canad. Math. Bull. 56(1) (2013), 203–212.10.4153/CMB-2011-150-2Search in Google Scholar
[24] Tkačuk, V. V.: The spaces Cp(X): decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22 (1986), 241–253.10.1016/0166-8641(86)90023-4Search in Google Scholar
© 2019 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications