Home The Menger and projective Menger properties of function spaces with the set-open topology
Article
Licensed
Unlicensed Requires Authentication

The Menger and projective Menger properties of function spaces with the set-open topology

  • Alexander V. Osipov EMAIL logo
Published/Copyright: May 21, 2019
Become an author with De Gruyter Brill

Abstract

For a Tychonoff space X and a family λ of subsets of X, we denote by Cλ(X) the space of all real-valued continuous functions on X with the set-open topology.

A Menger space is a topological space in which for every sequence of open covers 𝓤1, 𝓤2, … of the space there are finite sets 𝓕1 ⊂ 𝓤1, 𝓕2 ⊂ 𝓤2, … such that family 𝓕1 ∪ 𝓕2 ∪ … covers the space.

In this paper, we study the Menger and projective Menger properties of a Hausdorff space Cλ(X). Our main results state that

  1. Cλ(X) is Menger if and only if Cλ(X) is σ-compact;

  2. Cp(Y | X) is projective Menger if and only if Cp(Y | X) is σ-pseudocompact where Y is a dense subset of X.

  1. (Communicated by David Buhagiar)

References

[1] Arhangel’skii, A. V.: Continuous maps, factorization theorems, and function spaces, Trudy Moskovsk. Mat. Obshch. 47 (1984), 3–21.Search in Google Scholar

[2] Arhangel’skii, A. V.: Hurewicz spaces, analytic sets and fan tightness of function spaces, Sov. Math. Dokl. 33 (1986), 396–399.Search in Google Scholar

[3] Arhangel’skii, A. V.: Projective σ-compactness, ω1-caliber, andCp-spaces, Topology Appl. 157 (2000), 874–893.10.1016/S0166-8641(99)00011-5Search in Google Scholar

[4] Arhangel’skii, A. V.—Ponomarev, V. I.: Fundamentals of General Topology: Problems and Excercises, Reidel, 1984. (Translated from the Russian.)Search in Google Scholar

[5] Bonanzinga, M.—Cammaroto, F.—Matveev, M.: Projective versions of selection principles, Topology Appl. 157 (2010), 874–893.10.1016/j.topol.2009.12.004Search in Google Scholar

[6] Duanmu, H.—Tall, F. D.—Zdomskyy, L., Productively Lindelöf and indestructibly Lindelöf spaces, Topology Appl. 160(18) (2013), 2443–2453.10.1016/j.topol.2013.07.038Search in Google Scholar

[7] Engelking, R.: General Topology, PWN, Warsaw, 1977; Mir, Moscow, 1986.Search in Google Scholar

[8] Gillman, L.—Jerison, M.: Rings of Continuous Functions. The University Series in Higher Mathematics, Princeton, New Jersey: D. Van Nostrand Co., Inc., 1960.10.1007/978-1-4615-7819-2Search in Google Scholar

[9] Hurewicz, W.: Über eine verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.10.1007/BF01216792Search in Google Scholar

[10] Hurewicz, W.: Über folger stetiger Funktionen, Fund. Math. 9 (1927), 193–204.10.4064/fm-9-1-193-210Search in Google Scholar

[11] Kočinac, LJ. D. R.: Selection principles and continuous images, Cubo Math.J. 8(2) (2006), 23–31.Search in Google Scholar

[12] Menger, K.: Einige Überdeckungssätze der Punktmengenlehre, Sizungsberichte der Wiener Akademie 133 (1924), 421–444.10.1007/978-3-7091-6110-4_14Search in Google Scholar

[13] Miller, A. W.—Fremlin, D. H.: On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988), 17–33.10.4064/fm-129-1-17-33Search in Google Scholar

[14] Nokhrin, S. E.: Some properties of set-open topologies, J. Math. Sci. 144(3) (2007), 4123–4151.10.1007/s10958-007-0258-3Search in Google Scholar

[15] Osipov, A. V.—Pytkeev, E. G.: On the σ-countable compactness of spaces of continuous functions with the set-open topology, Proc. Steklov Inst. Math. 285(1) (2014), 153–162.10.1134/S0081543814050174Search in Google Scholar

[16] Osipov, A. V.: Topological-algebraic properties of function spaces with set-open topologies, Topology Appl. 159(3) (2012), 800–805.10.1016/j.topol.2011.11.049Search in Google Scholar

[17] Osipov, A. V.: Group structures of a function spaces with the set-open topology, Sib. Élektron. Mat. Izv. 14 (2017), 1440–1446.Search in Google Scholar

[18] Osipov, A. V.: The C-compact-open topology on function spaces, Topology Appl. 159(13) (2012), 3059–3066.10.1016/j.topol.2012.05.018Search in Google Scholar

[19] Sakai, M.: The projective Menger property and an embedding of Sω into function spaces, Topology Appl. 220 (2017), 118–130.10.1016/j.topol.2017.02.017Search in Google Scholar

[20] Sakai, M.—Scheepers, M.: The combinatorics of open covers. In: Recent Progress in General Topology III (K. P. Hart, J. van Mill, P. Simon, eds.), Atlantic Press, 2014, pp. 751–799.10.2991/978-94-6239-024-9_18Search in Google Scholar

[21] Shahmatov, D. B.: A pseudocompact Tychonoff space all countable subsets of which are closed and C*-embedded, Topology Appl. 22(2) (1986), 139–144.10.1016/0166-8641(86)90004-0Search in Google Scholar

[22] Tall, F. D.: Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl. 158(18) (2011), 2556–2563.10.1016/j.topol.2011.08.015Search in Google Scholar

[23] Tall, F. D.: Productively Lindelöf spaces may all be D, Canad. Math. Bull. 56(1) (2013), 203–212.10.4153/CMB-2011-150-2Search in Google Scholar

[24] Tkačuk, V. V.: The spaces Cp(X): decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22 (1986), 241–253.10.1016/0166-8641(86)90023-4Search in Google Scholar

Received: 2018-05-07
Accepted: 2018-07-17
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0258/html?lang=en
Scroll to top button