Startseite Caratheodory’s solution of the Cauchy problem and a question of Z. Grande
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Caratheodory’s solution of the Cauchy problem and a question of Z. Grande

  • Volodymyr Mykhaylyuk EMAIL logo und Vadym Myronyk
Veröffentlicht/Copyright: 20. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is shown that for a function f : [a, b] × ℝ → ℝ which is measurable with respect to the first variable and upper semicontinuous quasicontinuous and increasing with respect to the second variable there exists a Caratheodory’s solution y(x)=y0+x0xf(t,y(t))dμ(t) of the Cauchy problem y′(x) = f(x, y(x)) with the initial condition y(x0) = y0. There is constructed an example which indicate to essentiality of condition of increasing and give the negative answer to a question of Z. Grande.

  1. (Communicated by Ján Borsík)

References

[1] Filippov, A.: Differential Equations with Discontinuous Righthand Sides, Springer Science+Business Media Dordrecht, 1988.10.1007/978-94-015-7793-9Suche in Google Scholar

[2] Grande, Z.: On the measurability of functions with quasi-continuous and upper semi-continuous vertical sections, Math. Slovaca 63(4) (2013), 793–798.10.2478/s12175-013-0135-0Suche in Google Scholar

[3] Kwiecińska, G.: On the Caratheodory superposition of multifunctions and an existence theorem, Math. Slovaca 64(2) (2014), 315–332.10.2478/s12175-014-0206-xSuche in Google Scholar

[4] Scorza Dragoni, G.: Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad unaltru variabili, Rend. Semin. Mat. Univ. Padova 17 (1948), 102–106.Suche in Google Scholar

[5] Tolstonogov, A.: Scorza-Dragoni’s theorem for multi-valued mappings with domain of definition, Mat. Zametki 48(5) (1990), 109–120 (in Russian).10.1007/BF01236303Suche in Google Scholar

Received: 2017-01-26
Accepted: 2017-11-27
Published Online: 2018-11-20
Published in Print: 2018-12-19

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0187/html?lang=de
Button zum nach oben scrollen