Startseite Mathematik Weak pseudo-BCK algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weak pseudo-BCK algebras

  • Lavinia Corina Ciungu EMAIL logo
Veröffentlicht/Copyright: 20. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BCK-algebras. We give some characterizations of weak pseudo-BCK algebras and we prove that a weak pseudo-BCK algebra satisfying the right distribution laws is a BCK-algebra. We define the class of commutative weak pseudo-BCK algebras, and we give equivalent definitions and characterization theorems for commutative weak pseudo-BCK algebras. The classes of quasi pseudo-BCK algebras and weak pseudo-BCK(E) algebras are introduced and a characterization theorem for quasi pseudo-BCK algebras is given. We prove that any weak pseudo-BCK(E) algebra is a pseudo-BE algebra and the class of commutative weak pseudo-BCK(E) algebras is equivalent to the class of commutative pseudo-BCK algebras.

  1. (Communicated by Jan Kühr)

References

[1] Borumand Saeid, A.: Smarandache BE-algebras, Education Publisher, Columbus, Ohio, USA, 2013.Suche in Google Scholar

[2] Borzooei, R. A.—Borumand Saeid, A.—Rezaei, A.—Radfar, A.—Ameri, R.: On pseudo-BE algebras, Discuss. Math. Gen. Algebra Appl. 33 (2013), 95–108.10.7151/dmgaa.1193Suche in Google Scholar

[3] Borzooei, R. A.—Borumand Saeid, A.—Rezaei, A.—Radfar, A.—Ameri, R.: On distributive pseudo BE–algebras, Fasc. Math. 54(1) (2015), 21–39.10.1515/fascmath-2015-0002Suche in Google Scholar

[4] Cīrulis, J.: On commutative weak BCK-algebras, arXiv:1304.0999v2 [math.LO]Suche in Google Scholar

[5] Cīrulis, J.: On some classes of commutative weak BCK-algebras, Studia Logica 103(3) (2015), 479–490.10.1007/s11225-014-9575-ySuche in Google Scholar

[6] Cīrulis, J.: Quasi-orthomodular posets and weak BCK-algebras, Order 103(3) (2014), 403–419.10.1007/s11083-013-9309-1Suche in Google Scholar

[7] Cīrulis, J.: Implications in sectionally pseudocomplemented posets, Acta Sci. Math. (Szeged) 74 (2008), 477–491.Suche in Google Scholar

[8] Cīrulis, J.: Residuation subreducts of pocrigs, Bull. Sect. Logic 39(2010), 11–16.Suche in Google Scholar

[9] Ciungu, L. C.: Non-commutative Multiple-Valued Logic Algebras, Springer, New York, 2014.10.1007/978-3-319-01589-7Suche in Google Scholar

[10] Ciungu, L. C.: Commutative pseudo-BE algebras, Iran. J. Fuzzy Syst. 13(1) (2016), 131–144.Suche in Google Scholar

[11] Georgescu, G.—Iorgulescu, A.: Pseudo-BCK algebras: An extension of BCK-algebras. In: Proceedings of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, pp. 97–114.10.1007/978-1-4471-0717-0_9Suche in Google Scholar

[12] Hong, S. M.—Jun, Y. B.—Öztürk, M.A.: Generalizations of BCK-algebras, Sci. Math. Jpn. 58 (2003), 603–611.Suche in Google Scholar

[13] Iorgulescu, A.: Classes of pseudo-BCK algebras – Part I, J. Mult.-Valued Logic Soft Comput. 12 (2006), 71–130.10.1007/s00500-007-0239-ySuche in Google Scholar

[14] Iorgulescu, A.: Algebras of Logic as BCK-Algebras, ASE Ed., Bucharest, 2008.Suche in Google Scholar

[15] Iorgulescu, A.: New generalizations of BCI, BCK and Hilbert algebras – Part I, J. Mult.-Valued Logic Soft Comput. 27(2016), 353–406.Suche in Google Scholar

[16] Iorgulescu, A.: New generalizations of BCI, BCK and Hilbert algebras – Part II, J. Mult.-Valued Logic Soft Comput. 27(2016), 407–456.Suche in Google Scholar

[17] Kühr, J.: Pseudo BCK-algebras and Related Structures, Habilitation thesis, Palacký University in Olomouc, 2007.Suche in Google Scholar

[18] Kühr, J.: Commutative pseudo BCK-algebras, Southeast Asian Bull. Math. 33 (2009), 451–475.Suche in Google Scholar

[19] Rezaei, A.—Borumand Saeid, A.—Radfar, A.—Borzooei, R. A.: Congruence relations on pseudo-BE algebras, An. Univ. Craiova Ser. Mat. Inform. 41 (2014), 166–176.10.29252/hatef.jahla.1.2.4Suche in Google Scholar

Received: 2017-02-23
Accepted: 2017-10-08
Published Online: 2018-11-20
Published in Print: 2018-12-19

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0183/pdf
Button zum nach oben scrollen