Home Mathematics Truncated euler polynomials
Article
Licensed
Unlicensed Requires Authentication

Truncated euler polynomials

  • Takao Komatsu EMAIL logo and Claudio Pita-Ruiz
Published/Copyright: May 18, 2018
Become an author with De Gruyter Brill

Abstract

We define a truncated Euler polynomial Em,n(x) as a generalization of the classical Euler polynomial En(x). In this paper we give its some properties and relations with the hypergeometric Bernoulli polynomial.


Communicated by Anatolij Dvurečenskij


References

[1] Hassen, A.—Nguyen, H. D.: Hypergeometric Bernoulli polynomials and Appell sequences, Int. J. Number Theory 4 (2008), 767–774.10.1142/S1793042108001754Search in Google Scholar

[2] Hassen, A.—Nguyen, H. D.: Hypergeometric zeta functions, Int. J. Number Theory 6 (2010), 99–126.10.1142/S179304211000282XSearch in Google Scholar

[3] Kamano, K.: Sums of products of hypergeometric Bernoulli numbers, J. Number Theory 130 (2010), 2259–2271.10.1016/j.jnt.2010.04.005Search in Google Scholar

[4] Kim, D. S.—Kim, T.: Some identities of Frobenius-Euler polynomials arising from umbral calculus, Adv. Difference Equ. 2012 (2012), #196.10.1186/1687-1847-2012-196Search in Google Scholar

[5] Komatsu, T.: Hypergeometric Cauchy numbers, Int. J. Number Theory 9 (2013), 545–560.10.1142/S1793042112501473Search in Google Scholar

[6] Komatsu, T.: Incomplete poly-Cauchy numbers, Monatsh. Math. 180 (2016), 271–288.10.1007/s00605-015-0810-zSearch in Google Scholar

[7] Komatsu, T.—Liptai, K.—Mező, I.: Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers, Publ. Math. Debrecen 88 (2016), 357–368.10.5486/PMD.2016.7361Search in Google Scholar

[8] Komatsu, T.—Mező, I.—Szalay, L.: Incomplete Cauchy numbers, Acta Math. Hungar. 149 (2016), 306–323.10.1007/s10474-016-0616-zSearch in Google Scholar

[9] Pita, C.: Carlitz-type and other Bernoulli identities, J. Integer Seq. 19 (2016), Article 16.1.8.Search in Google Scholar

[10] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences, available online at http://oeis.org.Search in Google Scholar

Received: 2016-9-16
Accepted: 2016-11-13
Published Online: 2018-5-18
Published in Print: 2018-6-26

© 2018 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0122/pdf
Scroll to top button