Home Mathematics On the proximity of multiplicative functions to the number of distinct prime factors function
Article
Licensed
Unlicensed Requires Authentication

On the proximity of multiplicative functions to the number of distinct prime factors function

  • Jean-Marie De Koninck EMAIL logo , Nicolas Doyon and François Laniel
Published/Copyright: May 18, 2018
Become an author with De Gruyter Brill

Abstract

Given an additive function f and a multiplicative function g, let E(f, g;x) = #{nx: f(n) = g(n)}. We study the size of E(ω,g;x) and E(Ω,g;x), where ω(n) stands for the number of distinct prime factors of n and Ω(n) stands for the number of prime factors of n counting multiplicity. In particular, we show that E(ω,g;x) and E(Ω,g;x) are Oxloglogx for any integer valued multiplicative function g. This improves an earlier result of De Koninck, Doyon and Letendre.


The work of the first author was supported by a grant from NSERC.



Communicated by Federico Pellarin


References

[1] Balazard, M.: Unimodalité de la distribution du nombre de diviseurs premiers ďun entier, Ann. Inst. Fourier 40 (1990), 255–270.10.5802/aif.1213Search in Google Scholar

[2] Ben SaϊD, F.—Nicolas, J. L.: Sur une application de la formule de Selberg-Delange, Colloq. Math. 98 (2003), 223–247.10.4064/cm98-2-8Search in Google Scholar

[3] De Koninck, J. M.—Doyon, N.—Letendre, P.: On the proximity of additive and multiplicative functions, Funct. Approx. Comment. Math. 201 (2015), 1–18.10.7169/facm/2015.52.2.10Search in Google Scholar

[4] De Koninck, J. M.—Luca, F.: Analytic Number Theory: Exploring the Anatomy of Integers. Grad. Stud. Math. 134, American Mathematical Society, Providence, Rhode Island, 2012.10.1090/gsm/134Search in Google Scholar

[5] Hardy, G. H.—Ramanujan, S.: The normal number of prime factors of a number n, Q. J. Math. 48 (1917), 76–92.Search in Google Scholar

[6] Spearman, B. K.—Williams, K. S.: On integers with prime factors restricted to certain congruence classes, Far East J. Math. 24 (2007), 153–161.Search in Google Scholar

[7] Tenenbaum, G.: Introduction à la Théorie Analytique des Nombres. Collection SMF, Société Mathématique de France, 1995.Search in Google Scholar

Received: 2016-5-20
Accepted: 2016-10-3
Published Online: 2018-5-18
Published in Print: 2018-6-26

© 2017 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0121/html
Scroll to top button