Startseite The Choquet integral with respect to fuzzy measures and applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Choquet integral with respect to fuzzy measures and applications

  • Anna Rita Sambucini EMAIL logo
Veröffentlicht/Copyright: 30. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Fuzzy measures and Choquet asymmetric integral are considered here. As an application to economics some Core-Walras results are given.


Dedicated to Professor Paolo de Lucia on the occasion of his 80th birthday with deep esteem

Communicated by Anatolij Dvurečenskij

This work was supported by University of Perugia – Department of Mathematics and Computer Sciences – Grant Nr. 2010.011.0403 and by the Grant prot. UFMBAZ2017/0000326 of GNAMPA (Italy).

Anna Rita Sambucini orcid ID: 0000-0003-0161-8729.


References

[1] Angeloni, L.—Martellotti, A.: A separation result with applications to Edgeworth equivalence in some infinite dimensional setting, Comment. Math. 44 (2004), 227–243.Suche in Google Scholar

[2] Angeloni, L.—Martellotti, A.: Core-Walras equivalence in finitely additive economies with extremely desirable commodities, Mediterr. J. Math. 4 (2007), 87–107.10.1007/s00009-007-0105-2Suche in Google Scholar

[3] Armstrong, T. E. —Richter, M. K.: The Core-Walras equivalence, J. Econom. Theory 33 (1984), 116–151.10.1016/0022-0531(84)90044-9Suche in Google Scholar

[4] Barbieri, G.—Boccuto, A.: On extensions of k-subadditive lattice group valued capacities, Ital. J. Pure Appl. Math. 37 (2017), 387–408.10.1515/ms-2017-0059Suche in Google Scholar

[5] Basile, A.: Finitely additive nonatomic coalition production economies: core-Walras equivalence, Internat. Econom. Rev. 34 (1993), 983–995.10.2307/2526975Suche in Google Scholar

[6] Basile, A.—Graziano, M. G.: On the Edgeworth’s conjecture in finitely additive economies with restricted coalitions, J. Math. Econom. 36 (2001), 219–240.10.1016/S0304-4068(01)00080-5Suche in Google Scholar

[7] Basile, A.—Donnini, C.—Graziano, M. G.: Core and equilibria in coalitional asymmetric information economies, J. Math. Econom. 45 (2009), 293–307.10.1016/j.jmateco.2008.11.001Suche in Google Scholar

[8] Basile, A.—Donnini, C.—Graziano, M. G.: Economies with informational asymmetries and limited vetoer coalitions, Econom. Theory 45 (2010), 147–180. (http://dx.doi.org/10.1007/s00199-009-0473-x).10.1007/s00199-009-0473-xSuche in Google Scholar

[9] Basile, A.—Graziano, M. G.: Core equivalences for equilibria supported by non-linear prices, Positivity 17 (2013), 621–653.10.1007/s11117-012-0195-3Suche in Google Scholar

[10] Basile, A.—Graziano, M. G.—Pesce, M.: On fairness of equilibria in economies with differential information, Theory and Decision 76 (2014), 573–599.10.1007/s11238-013-9386-zSuche in Google Scholar

[11] Benvenuti, P.—Mesiar, R.—Vivona, D: Monotone set functions-based integrals. In: Handbook of Measure Theory, vol. II, (E. Pap, ed.), Elsevier Science, Amsterdam, 2002, pp. 1329–1379.10.1016/B978-044450263-6/50034-8Suche in Google Scholar

[12] Bhaskara Rao, K. P. S.—Candeloro, D.—Martellotti, A.: ℝn-valued finitely additive measures admitting countably additive restrictions with large range, J. Math. Anal. Appl. 177 (1993), 166–169.10.1006/jmaa.1993.1249Suche in Google Scholar

[13] Boccuto, A.—Sambucini, A. R.: On the De Giorgi-Letta integral with respect to means with values in Riesz spaces, Real Anal. Exchange 21 (1995/96), 793–810.10.2307/44152695Suche in Google Scholar

[14] Boccuto, A.—Sambucini, A. R.: The monotone integral with respect to Riesz-space valued capacities, Rendiconti di Matematica Roma Serie VII, 16 (1996), 491–524.Suche in Google Scholar

[15] Boccuto, A.—Sambucini, A. R.: Comparison between different types of abstract integral in Riesz spaces, Rend. Circ. Mat. Palermo, Serie II, 46 (1997), 255–278.10.1007/BF02977030Suche in Google Scholar

[16] Boccuto, A.—Sambucini, A. R.: Addendum to: Comparison between different types of abstract integrals in Riesz Spaces, Rend. Circ. Mat. Palermo 49 (2000), 395–39610.1007/BF02904245Suche in Google Scholar

[17] Bongiorno, B.—Di Piazza, L.—Musiał, K.: A decomposition theorem for the fuzzy Henstock integral, Fuzzy Sets and Systems 200 (2012) 36–47. https://doi.org/10.1016/j.fss.2011.12.006.10.1016/j.fss.2011.12.006Suche in Google Scholar

[18] Candeloro, D.—Martellotti, A.: Su alcuni problemi relativi a misure scalari subadditive e applicazioni al caso dell’additività finita, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 27 (1978), 284–296.Suche in Google Scholar

[19] Candeloro, D.—Martellotti, A.: Sul rango di una massa vettoriale, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 28 (1979), 102–111.Suche in Google Scholar

[20] Candeloro, D.—Martellotti, A.: Geometric properties of the range of two-dimensional quasi-measures with respect to Radon-Nikodym property, Adv. Math. 29 (1992), 328–344.10.1016/0001-8708(92)90023-ESuche in Google Scholar

[21] Cavaliere, P.—de Lucia, P.: Some new results in non-additive measure theory, Commun. Appl. Anal. 13 (2009), 535–545.Suche in Google Scholar

[22] Cavaliere, P.—de Lucia, P.—De Simone, A.: On the absolute continuity of additive and non-additive functions, Funct. Approx. Comment. Math. 50 (2014), 181–190.10.7169/facm/2014.50.1.7Suche in Google Scholar

[23] Cerreia-Vioglio, S.—Maccheroni, F.—Marinacci, M.—Montrucchio, L.: Choquet Integration on Riesz Spaces and Dual Comonotonicity, Trans. Amer. Math. Soc. 367 (2015), 8521–8542. http://dx.doi.org/10.1090/tran/6313.10.1090/tran/6313Suche in Google Scholar

[24] Denneberg, D.: Non-Additive Measures and Integrals, Kluwer Acad. Publ. Ser. B Vol. 27, 1994.10.1007/978-94-017-2434-0Suche in Google Scholar

[25] Donnini, C.—Martellotti, A.—Sambucini, A. R.: Core and Walras equilibria in the subadditive economies, preprint N. 3, Dept. Math. and Computer Sciences, Univ of Perugia, (2008).Suche in Google Scholar

[26] Garcìa-Cutrin, J.—Hervés-Beloso, C.: A discrete approach to continuum economies, Econom. Theory 3 (1993), 577–583.10.1007/BF01209704Suche in Google Scholar

[27] Girotto, B.—Holzer, S.: A characterization of neo-additive measures, Fuzzy Sets and Systems 284 (2016), 56–62. http://dx.doi.org/10.1016/j.fss.2015.09.022.10.1016/j.fss.2015.09.022Suche in Google Scholar

[28] Hildebrand, W.: Core and Equilibria of a Large Economy, Princeton University Press, Princeton, 1974.Suche in Google Scholar

[29] Hüsseinov, F.—Sagara, N.: Concave measures and the fuzzy core of exchange economies with heterogeneous divisible commodities, Fuzzy Sets and Systems 198 (2012), 70–82.10.1016/j.fss.2011.12.021Suche in Google Scholar

[30] Jang, L. C.—Kil, B. M.—Kwon, J. S.: Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems 91 (1997), 95–98.10.1016/S0165-0114(96)00124-8Suche in Google Scholar

[31] Jang, L. C.—Kwon, J. S.: On the representation of Choquet integrals of set valued functions and null sets, Fuzzy Sets and Systems 112 (2000), 233–239.10.1016/S0165-0114(98)00184-5Suche in Google Scholar

[32] Leese, S. J.: Multifunctions of Souslin type, Bull. Austr. Math. Soc. 11 (1974), 395–411.10.1017/S0004972700044038Suche in Google Scholar

[33] Li, J.—Mesiar, R.—Pap, E.: The Choquet integral as Lebesgue integral and related inequalities, Kybernetika 46 (2010), 198–1107.Suche in Google Scholar

[34] Li, J.—Mesiar, R.—Pap, E.: Atoms of weakly null-additive monotone measures and integrals, Inform. Sci. 257 (2014), 183–192.10.1016/j.ins.2013.09.013Suche in Google Scholar

[35] Marinacci, M.—Montrucchio, L.: On concavity and supermodularity, J. Math. Anal. Appl. 344 (2008), 642–654.10.1016/j.jmaa.2008.03.009Suche in Google Scholar

[36] Martellotti, A.: Core equivalence theorem: countably many types of agents and commodities in L1(μ), Decision in Economics and Finance 30 (2007), 51–70.10.1007/s10203-007-0069-5Suche in Google Scholar

[37] Martellotti, A.: Finitely additive economies with free extremely desirable commodities, J. Math. Econom. 44 (2008), 535–549.10.1016/j.jmateco.2007.05.014Suche in Google Scholar

[38] Martellotti, A.—Sambucini, A. R.: On the comparison between Aumann and Bochner integral, J. Math. Anal. Appl. 260 (2001), 6–17.10.1006/jmaa.2000.7404Suche in Google Scholar

[39] Martellotti, A.—Sambucini, A. R.: The finitely additive integral of multifunctions with closed and convex values, Z. Anal. Anwend. (J. for Analysis and its Applications) 21 (2002), 851–864.10.4171/ZAA/1112Suche in Google Scholar

[40] Martellotti, A.—Sambucini, A. R.: Multivalued integral of non convex integrands, Int. J. Pure Appl. Math. 5 (2003), 11–28.Suche in Google Scholar

[41] Martellotti, A.—Sambucini, A. R.: A note on a Liapounov-like theorem for some finitely additive measures and applications, J. Concr. Appl. Math. 3 (2005), 481–499.Suche in Google Scholar

[42] Mesiar, R.: Choquet-like integrals, J. Math. Anal. Appl. 194 (1995), 477–488.10.1006/jmaa.1995.1312Suche in Google Scholar

[43] Murofushi, T.—Sugeno, M.: A theory of fuzzy measures: Representations, the Choquet integral and null sets, J. Math. Anal. Appl. 159 (1991), 532–549.10.1016/0022-247X(91)90213-JSuche in Google Scholar

[44] Narukawa, Y.—Torra, V.: Fuzzy measures and Choquet integral on discrete spaces. In: Computational Intelligence, Theory and Applications. Advances in Soft Computing 33, 2005, pp. 573–581.10.1007/3-540-31182-3_53Suche in Google Scholar

[45] Pap, E.: Null-Additive Set Functions, Kluwer, Dordrecht, 1995.Suche in Google Scholar

[46] Pap, E.: Pseudo-Additive Measures and their Applications. In: Handbook of Measure Theory, (E. Pap ed.), Elsevier, 2002.10.1016/B978-044450263-6/50036-1Suche in Google Scholar

[47] Stamate, C.—Croitoru, A.: Non linear integrals, properties and relationships, Recent Advances in Telecommunications, Signal and Systems, WSEAS Press, 118–123.Suche in Google Scholar

[48] Teran, P.: Jensen’s inequality for random elements in metric spaces and some applications, J. Math. Anal. Appl. 414 (2014), 756–766.10.1016/j.jmaa.2013.09.047Suche in Google Scholar

[49] Torra, V.: Some properties of Choquet integral based probability functions, Acta Comment. Univ. Tartu. Math. 19 (2015), 35–47. https://doi.org/10.12697/ACUTM.2015.19.0410.12697/ACUTM.2015.19.04Suche in Google Scholar

[50] Vind, K.: Edgeworth allocations in exchange economy with many traders, Int. Econom. Review 5 (1964), 165–177.10.2307/2525560Suche in Google Scholar

[51] Wang, R. S.: Some inequalities and convergence theorems for Choquet integrals, J. Appl. Math. Comput. 35 (2011), 305–321.10.1007/s12190-009-0358-ySuche in Google Scholar

Received: 2016-2-29
Accepted: 2016-5-19
Published Online: 2017-11-30
Published in Print: 2017-11-27

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Paolo de Lucia
  2. Arcs, hypercubes, and graphs as quotients of projective Fraïssé limits
  3. A note on field-valued measures
  4. Topologies and uniformities on d0-algebras
  5. On some properties of 𝓙-approximately continuous functions
  6. Porous subsets in the space of functions having the Baire property
  7. Rademacher’s theorem in Banach spaces without RNP
  8. Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces
  9. Measure games on pseudo-D-lattices
  10. On some properties of k-subadditive lattice group-valued capacities
  11. Lp Spaces in vector lattices and applications
  12. The Choquet integral with respect to fuzzy measures and applications
  13. A note on the range of vector measures
  14. Ideal convergent subsequences and rearrangements for divergent sequences of functions
  15. Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting
  16. A generalization of the exponential sampling series and its approximation properties
  17. Monotonicity and total boundedness in spaces of “measurable” functions
  18. Vector lattices in synaptic algebras
  19. Density, ψ-density and continuity
  20. Feather topologies
  21. On disruptions of nonautonomous discrete dynamical systems in the context of their local properties
  22. Rate of convergence of empirical measures for exchangeable sequences
  23. On non-additive probability measures
  24. Equi-topological entropy curves for skew tent maps in the square
  25. On the lack of equi-measurability for certain sets of Lebesgue-measurable functions
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0049/pdf
Button zum nach oben scrollen