Startseite Mathematik Spectral problems of nonself-adjoint singular discrete Sturm-Liouville operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectral problems of nonself-adjoint singular discrete Sturm-Liouville operators

  • Bilender P. Allahverdiev EMAIL logo
Veröffentlicht/Copyright: 3. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study we construct a space of boundary values of the minimal symmetric discrete Sturm-Liouville (or second-order difference) operators with defect index (1, 1) (in limit-circle case at ±∞ and limit-point case at ∓∞), acting in the Hilbert space ϱ2(Z)ϱ2(Z)(Z:={0,±1,±2,}). Such a description of all maximal dissipative, maximal accumulative and self-adjoint extensions is given in terms of boundary conditions at ± ∞. After constructing the space of the boundary values, we investigate two classes of maximal dissipative operators. This investigation is done with the help of the boundary conditions, called “dissipative at −∞” and “dissipative at ∞”. In each of these cases we construct a self-adjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations. These representations allow us to determine the scattering matrix of dilation. We also construct a functional model of the maximal dissipative operator and define its characteristic function in terms of the Weyl-Titchmarsh function of the self-adjoint operator. Finally, we prove a theorem on completeness of the system of eigenvectors and associated vectors (or root vectors) of the maximal dissipative operators.


(Communicated by Michal Zajac)


References

[1] Agarwal, R. P.: Difference Equations and Inequalities, Marcel Dekker, New York, 2000.10.1201/9781420027020Suche in Google Scholar

[2] Akhiezer, N. I.: The Classical Moment Problem and Some Related Questions in Analysis, Fizmatgiz, Moscow, 1961 [English translation: Oliver and Boyd, Hafner, London-New York, 1965].Suche in Google Scholar

[3] Allahverdiev, B. P.: Dissipative second-order difference operators with general boundary conditions, J. Difference Equ. Appl. 10 (2004), 1–16.10.1080/1023619031000110912Suche in Google Scholar

[4] Allahverdiev, B. P.: Extensions, dilations and functional models of infinite Jacobi matrix, Czechoslovak Math. J. 55 (2005), 593–609.10.1007/s10587-005-0048-3Suche in Google Scholar

[5] Allahverdiev, B. P.: Nonself-adjoint second-order difference operators in limit-circle cases, Abstr. Appl. Anal. (2012), Article ID 473461, 1–16.10.1155/2012/473461Suche in Google Scholar

[6] Allakhverdiev, B. P.—Guseinov, G. SH.: On the spectral theory of dissipative difference operators of second order, Mat. Sb. 180 (1989), 101–118 [English translation: Sb. Math. 66 (1990), 107–125].Suche in Google Scholar

[7] Atkinson, F. V.: Discrete and Continuous Boundary Problems, Academic Press, New York, 1964.10.1063/1.3051875Suche in Google Scholar

[8] Behrndt, J.—Malamud, M. M.—Neidhardt, H.: Scattering theory for open quantum systems with finite rank coupling, Math. Phys. Anal. Geom. 10 (2007), 313–358.10.1007/s11040-008-9035-xSuche in Google Scholar

[9] Berezanskii, YU. M.: Expansion in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965 [English translation: Amer. Math. Soc., Providence, RI, 1968].Suche in Google Scholar

[10] Bruk, V. M.: On a class of boundary-value problems with a spectral parameter in the boundary conditions, Mat. Sb. 100 (1976), 210–216 [English translation: Sb. Math. 28 (1976), 186–192].Suche in Google Scholar

[11] Chen, J.—Shi, Y.: The limit-circle and limit-point criteria for second order linear difference equations, Comput. Math. Appl. 47 (2004), 967–976.10.1016/S0898-1221(04)90080-6Suche in Google Scholar

[12] Clark, S. L.: A spectral analysis for self-adjoint operators generated by a class of second order difference equations, J. Math. Anal. Appl. 197 (1996), 267–285.10.1006/jmaa.1996.0020Suche in Google Scholar

[13] Gorbachuk, V. I.—Gorbachuk, M. L.: Boundary Value Problems for Operator Differential Equations, Naukova Dumka, Kiev, 1984 [English translation: Kluwer, Dordrecht, 1991].Suche in Google Scholar

[14] Elaydi, S. N.: An Introduction to Difference Equations, Springer-Verlag, New York, 1996.10.1007/978-1-4757-9168-6Suche in Google Scholar

[15] Kochubei, A. N.: Extensions of symmetric operators and symmetric binary relations, Mat. Zametki 17 (1975), 41–48 [English translation: Math. Notes 17 (1975), 25–28].10.1007/BF01093837Suche in Google Scholar

[16] Kuzhel, A.: Characteristic Functions and Models of Nonself-Adjoint Operators, Kluwer, Dordrecht, 1996.10.1007/978-94-009-0183-4Suche in Google Scholar

[17] Lax, P. D.—Phillips, R. S.: Scattering Theory, Academic Press, New York, 1967.Suche in Google Scholar

[18] Sz-nagy, B.—Foias, C.: Analyse Harmonique des Opérateurs de L'espace de Hilbert, Masson/Akad Kiadó, Paris/Budapest, 1967 [English translation: North-Holland/Akad Kiadó, Amsterdam/Budapest, 1970].Suche in Google Scholar

[19] Neumann, J. Von: Allgemeine Eigenwerttheorie Hermitischer Functionaloperatoren, Math. Ann. 102 (1929), 49–131.10.1007/BF01782338Suche in Google Scholar

[20] Pavlov, B. S.: Spectral analysis of a dissipative singular Schrödinger operator in terms of a functional model, Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fundam. Napravl. 65 (1991), 95–163 [English translation: Partial Differential Equations 8. Encyclopaedia Math. Sci. 65, Springer, Berlin, 1996, pp. 87–163].Suche in Google Scholar

[21] Rofe-beketov, F. S.: Self-adjoint extensions of differential operators in space of vector-valued functions, Dokl. Akad. Nauk SSSR 184 (1969), 1034–1037 [English translation: Soviet Math. Dokl. 10 (1969), 188–192].Suche in Google Scholar

[22] Stone, M. H.: Linear Transformations in Hilbert Space and Their Applications to Analysis, Vol. 15, Amer. Math. Soc. Coll. Publ., Providence, RI, 1932.10.1090/coll/015Suche in Google Scholar

[23] Welstead, S. T.: Boundary conditions at infinity for difference equations of limit-circle type, J. Math. Anal. Appl. 89 (1982), 442–461.10.1016/0022-247X(82)90112-3Suche in Google Scholar

[24] Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Functionen, Math. Ann. 68 (1910), 222–269.10.1007/BF01474161Suche in Google Scholar

Received: 2013-5-11
Accepted: 2014-2-10
Published Online: 2016-11-3
Published in Print: 2016-8-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. Effect algebras with a full set of states
  3. Research Article
  4. An approach to orthomodular lattices via lattices with an antitone involution
  5. Research Article
  6. On properties of the free BCI-algebra with one generator
  7. Research Article
  8. The generalized order-k Narayana's cows numbers
  9. Research Article
  10. The irrationality of infinite series of a special kind
  11. Research Article
  12. On skew-commuting mappings in semiprime rings
  13. Research Article
  14. On the subordination and superordination of strongly starlike functions
  15. Research Article
  16. On a subclass of analytic functions involving Sălăgean integral operator
  17. Research Article
  18. Uniqueness of meromorphic functions sharing a value or small function
  19. Research Article
  20. A new inclusion for Bavrin's families of holomorphic functions in n-circular domains
  21. Research Article
  22. Oscillation of nonlinear fourth order mixed neutral differential equations
  23. Research Article
  24. Oscillation results for third order nonlinear mixed neutral differential equations
  25. Research Article
  26. Homoclinic solutions for second order Hamiltonian systems with general potentials
  27. Research Article
  28. A class of fractional impulsive functional differential equations with nonlocal conditions
  29. Research Article
  30. The weighted reverse poincaré type inequality for the difference of two parabolic subsolutions
  31. Research Article
  32. On the well posed solutions for nonlinear second order neutral difference equations
  33. Research Article
  34. Some approximation results for operators of Szász-Mirakjan-Durrmeyer type
  35. Research Article
  36. On the geometry of conditional expectations treated as projections on the L2-space
  37. Research Article
  38. Spectral problems of nonself-adjoint singular discrete Sturm-Liouville operators
  39. Research Article
  40. A necessary condition for the Smith equivalence of G-modules and its sufficiency
  41. Research Article
  42. On the internal approach to differential equations. 1. The involutiveness and standard basis
  43. Research Article
  44. Law of inertia for the factorization of cubic polynomials — the case of discriminants divisible by three
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0196/pdf
Button zum nach oben scrollen