Startseite Mathematik Oscillation criteria for higher order nonlinear delay dynamic equations on time scales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillation criteria for higher order nonlinear delay dynamic equations on time scales

  • Xin Wu und Taixiang Sun EMAIL logo
Veröffentlicht/Copyright: 26. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equation

Rn(t,x(t))+b(t)|Rn1(t,x(t))|γ1Rn1(t,x(t))+q(t)f(|x(τ(t))|γ1x(τ(t)))=0

on an arbitrary time scale T with sup T = ∞, where n ≥ 2, γ > 0 is a constant, τ: TT with τ(t) ≤ t and limtτ(t)= and

Rk(t,x(t))=x(t),ifk=0,rk(t)Rk1(t,x(t)),if1kn1,rn(t)|Rn1(t,x(t))|γ1Rn1(t,x(t)),ifk=n,

with rk(t) (1 ≤ kn) are positive rd-continuous functions. We give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.


Project Supported by NNSF of China (11461003) and NSF of Guangxi (2014GXNSFBA118003)



(Communicated by Michal Fečkan)


References

[1] Adivar, M.: A new periodicity concept for time scales, Math. Slovaca 63 (2013), 817–828.10.2478/s12175-013-0127-0Suche in Google Scholar

[2] Agarwal, P. R.—Bohner, M.—Peterson, A.: Dynamic equations on time scales: survey, J. Comput. Appl. Math. 141 (2002), 1–26.10.1016/S0377-0427(01)00432-0Suche in Google Scholar

[3] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[4] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar

[5] Erbe, L.—Peterson, A.—Saker, S. H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales, J. Comput. Appl. Math. 181 (2005), 92–102.10.1016/j.cam.2004.11.021Suche in Google Scholar

[6] Erbe, L.—Peterson, A.—Saker, S. H.: Oscillation and asymptotic behavior a third-order nonlinear dynamic equation, Can. Appl. Math. Q. 14 (2006), 129–147.Suche in Google Scholar

[7] Erbe, L.—Peterson, A.—Saker, S. H.: Hille and Nehari type criteria for third-order dynamic equations, J. Math. Anal. Appl. 329 (2007), 112–131.10.1016/j.jmaa.2006.06.033Suche in Google Scholar

[8] Hilger, S.: Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.10.1007/BF03323153Suche in Google Scholar

[9] Hassan, T. S.: Oscillation of third order nonlinear delay dynamic equations on time scales, Math. Comput. Modelling 49 (2009), 1573–1586.10.1016/j.mcm.2008.12.011Suche in Google Scholar

[10] Hassan, T. S.: Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput. 217 (2011), 5285–5297.10.1016/j.amc.2010.11.052Suche in Google Scholar

[11] Kac, V.—Chueng, P.: Quantum Calculus. Universitext, Springer, London, 2002.10.1007/978-1-4613-0071-7Suche in Google Scholar

[12] Kubiaczyk, I.—Saker, S. H.—Sikorska-Nowak, A.: Oscillation criteria for nonlinear neutral functional dynamic equations on time scales, Math. Slovaca 63 (2013), 263–290.10.2478/s12175-012-0097-7Suche in Google Scholar

[13] Rehak, P.: A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca 60 (2010), 237–256.10.2478/s12175-010-0009-7Suche in Google Scholar

[14] Saker, S. H.—Grace, S. R.: Oscillation criteria for quasi-linear functional dynamic equations on time scales, Math. Slovaca 62 (2012), 501–524.10.2478/s12175-012-0026-9Suche in Google Scholar

[15] Satco, B.-R.: Corneliu-Octavian Turcu, Henstock-Kurzweil-Pettis integral and weak topologies in nonlinear integral equations on time scales, Math. Slovaca 63 (2013), 1347–1360.10.2478/s12175-013-0175-5Suche in Google Scholar

[16] Sun, T.—Xi, H.—Peng, X.: Asymptotic behavior of solutions of higher-order dynamic equations on time scales, Adv. Difference Equ. (2011), Article ID 237219, 14 pp..10.1155/2011/237219Suche in Google Scholar

[17] Sun, T.—Xi, H.—Peng, X.—Yu, W.: Nonoscillatory solutions for higher-order neutral dynamic equations on time scales, Abstr. Appl. Anal. (2010), Article ID 428963, 16 pp..10.1155/2010/428963Suche in Google Scholar

[18] Sun, T.—Xi, H.—Yu, W.: Asymptotic behaviors of higher order nonlinear dynamic equations on time scales, Appl. Math. Comput. 37 (2011), 177–192.10.1007/s12190-010-0428-1Suche in Google Scholar

[19] Sun, T.—Yu, W.— Xi, H.: Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Inform. 30 (2012), 289–304.Suche in Google Scholar

[20] Wang, Y.—Xu, Z.: Asymptotic properties of solutions of certain third-order dynamic equations, Comput. Appl. Math. 236 (2012), 2354–2366.10.1016/j.cam.2011.11.021Suche in Google Scholar

[21] Sahiner, Y.: Oscillation of second-order delay differential equations on time scales, Nonlinear Anal. 63 (2005), e1073–e1080.10.1016/j.na.2005.01.062Suche in Google Scholar

[22] Yang, J.: Oscillation criteria for certain third-order variable delay functional dynamic equations on time scales, Appl. Math. Comput. 43 (2013), 445–466.10.1007/s12190-013-0672-2Suche in Google Scholar

Received: 2013-6-4
Accepted: 2014-1-9
Published Online: 2016-8-26
Published in Print: 2016-6-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups
  3. Research Article
  4. Characterization of hereditarily reversible posets
  5. Research Article
  6. Families of sets which can be represented as sublattices of the lattice of convex subsets of a linearly ordered set
  7. Research Article
  8. Diophantine equation X4+Y4 = 2(U4 + V4)
  9. Research Article
  10. On the congruent number problem over integers of cyclic number fields
  11. Research Article
  12. On the Diophantine equation x2 + C= yn for C = 2a3b17c and C = 2a13b17c
  13. Research Article
  14. Representations and evaluations of the error term in a certain divisor problem
  15. Research Article
  16. A construction of a Peano curve
  17. Research Article
  18. Compositions of ϱ-upper continuous functions
  19. Research Article
  20. Products of Świa̧tkowski functions
  21. Research Article
  22. Subclasses of meromorphically p-valent functions involving a certain linear operator
  23. Research Article
  24. Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments
  25. Research Article
  26. Oscillation criteria for higher order nonlinear delay dynamic equations on time scales
  27. Research Article
  28. On the solutions of a fourth order parabolic equation modeling epitaxial thin film growth
  29. Research Article
  30. Meromorphic solutions of q-shift difference equations
  31. Research Article
  32. Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales
  33. Research Article
  34. Multiplier spaces and the summing operator for series
  35. Research Article
  36. Weighted αβ-statistical convergence of Kantorovich-Mittag-Leffler operators
  37. Research Article
  38. The local spectral radius of a nonnegative orbit of compact linear operators
  39. Research Article
  40. A note on Lie product preserving maps on Mn(ℝ)
  41. Research Article
  42. On vector optimality conditions for constrained problems with -stable data
  43. Research Article
  44. Reparameterization of weakly nonlinear regression models with constraints
  45. Research Article
  46. Convolutions of polynomial kernels
  47. Research Article
  48. Closed form evaluation of sums containing squares of Fibonomial coefficients
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0166/pdf
Button zum nach oben scrollen