Startseite On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups

  • Giovanni Moreno EMAIL logo und Monika Ewa Stypa
Veröffentlicht/Copyright: 17. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove that the Cayley graph and the coset geometry of the von Dyck group D(a, b, c) are linked by a vertex-to-edge duality.


The first author was supported by the project P201/12/G028 of the Czech Republic Grant Agency (GA ČR).

The second author was supported by the doctoral school of the University of Salerno.



(Communicated by Július Korbaš)


acknowledgement

The authors would like to thank P. Longobardi and C. Sica for their helpful suggestions, and also the referees for carefully reading the manuscript.

References

[1] Beardon, A. F.: The Geometry of Discrete Groups. Grad. Texts in Math. 91, Springer-Verlag, New York, 1995.Suche in Google Scholar

[2] Beineke, L. W.: Characterizations of derived graphs, J. Combin. Theory 9 (1970), 129–135.10.1016/S0021-9800(70)80019-9Suche in Google Scholar

[3] Conder, M. D. E.—Martin, G. J.: Cusps, triangle groups and hyperbolic 3-folds, J. Austral. Math. Soc. Ser. A Math. Statist. 55 (1993), 149–182.10.1017/S1446788700032018Suche in Google Scholar

[4] Coxeter, H. S. M.—Moser, W. O. J.: Generators and Relations for Discrete Groups (3rd ed.). Ergeb. Math. Grenzgeb. 14, Springer-Verlag, New York, 1972.10.1007/978-3-662-21946-1Suche in Google Scholar

[5] Dyck, W.: Gruppentheoretische Studien, Math. Ann. 20 (1882), 1–44. http://dx.doi.org/10.1007/BF0144332210.1007/BF01443322Suche in Google Scholar

[6] Fazio, N.—Iga, K.—Nicolosi, A.—Perret, L.—Skeith III, W. E.: Hardness of Learning Problems over Burnside Groups of Exponent 3. Cryptology ePrint Archive, Report 2011/398, 2011. http://eprint.iacr.org/2011/39810.1007/s10623-013-9892-6Suche in Google Scholar

[7] Giudici, M.—Pearce, G.—Praeger, Ch. E.: Basic coset geometries, J. Algebraic Combin. 36 (2012), 561–594. http://dx.doi.org/10.1007/s10801-012-0350-810.1007/s10801-012-0350-8Suche in Google Scholar

[8] Gross, J. L.—Yellen, J.: Graph Theory and Its Applications 2nd ed.. Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2006.Suche in Google Scholar

[9] GrÜnbaum, B.—Shephard, G. C.: Tilings and Patterns, W. H. Freeman and Company, New York, 1989.Suche in Google Scholar

[10] Gupta, N.: On groups in which every element has finite order, Amer. Math. Monthly 96 (1989), 297–308. http://dx.doi.org/10.2307/232408510.1080/00029890.1989.11972187Suche in Google Scholar

[11] Handbook of Incidence Geometry F. Buekenhout, ed.). Buildings and Foundations, North-Holland, Amsterdam, 1995.Suche in Google Scholar

[12] Magnus, W.—Karrass, A.—Solitar, D.: Combinatorial Group Theory (2nd ed.), Dover Publications Inc., Mineola, NY, 2004.Suche in Google Scholar

[13] Mckee, T. A.—McMorris, F. R.: Topics in Intersection Graph Theory, SIAM Monogr. Discrete Math. Appl., Soc. for Industrial and Appl. Math. (SIAM), Philadelphia, PA, 1999. http://dx.doi.org/10.1137/1.978089871980210.1137/1.9780898719802Suche in Google Scholar

[14] Neumann, P. M.: The SQ-universality of some finitely presented groups, J. Austral. Math. Soc. Math. Statist. 16 (1973), 1–6 (Collection of articles dedicated to the memory of Hanna Neumann, I).10.1017/S1446788700013859Suche in Google Scholar

[15] Pasini, A.: Geometries and chamber systems, Sūrikaisekikenkyūsho Kōkyūroku 867 (1994), 28–52.Suche in Google Scholar

[16] Peters, J.—Naimpally, S.: Applications of near sets, Notices Amer. Math. Soc. 59 (2012), 536–542. http://dx.doi.org/10.1090/noti81710.1090/noti817Suche in Google Scholar

[17] Robinson, D. J. S.: A course in the theory of groups (2nd ed.). Grad. Texts in Math. 80, Springer-Verlag, New York, 1996. http://dx.doi.org/10.1007/978-1-4419-8594-110.1007/978-1-4419-8594-1Suche in Google Scholar

[18] Ronan, M. A.: Triangle geometries, J. Combin. Theory Ser. A 37 (1984), 294–319. http://dx.doi.org/10.1016/0097-3165(84)90051-710.1016/0097-3165(84)90051-7Suche in Google Scholar

[19] Sabidussi, G.: On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958), 800–804.10.1090/S0002-9939-1958-0097068-7Suche in Google Scholar

[20] Seward, B.: Burnside’s problem, spanning trees, and tilings, arXiv (2011), http://arxiv.org/abs/1104.1231v210.2140/gt.2014.18.179Suche in Google Scholar

[21] Sossinsky, A. B.: Tolerance space theory and some applications, Acta Appl. Math. 5 (1986), 137–167. http://dx.doi.org/10.1007/BF0004658510.1007/BF00046585Suche in Google Scholar

[22] Tucker, T. W.: Finite groups acting on surfaces and the genus of a group, J. Combin. Theory Ser. B 34 (1983), 82–98. http://dx.doi.org/10.1016/0095-8956(83)90009-610.1016/0095-8956(83)90009-6Suche in Google Scholar

[23] Vinogradov, A. M.: Why is space three-dimensional and how may groups be seen?, Acta Appl. Math. 5 (1986), 169–180. http://dx.doi.org/10.1007/BF0004658610.1007/BF00046586Suche in Google Scholar

[24] White, A. T.: On the genus of a group, Trans. Amer. Math. Soc. 173 (1972), 203–214.10.1016/S0304-0208(01)80008-6Suche in Google Scholar

[25] Zeeman, E. C.: The topology of the brain and visual perception. In: Topology of 3-manifolds and Related Topics. Proc. The Univ. of Georgia Institute, 1961, Prentice-Hall, Englewood Cliffs, NJ, 1962, pp. 240–256.Suche in Google Scholar

[26] Tits: Géométries polyédriques et groupes simples, U Atti 2a Riunione Groupem. Math. Express. Lat. Firenze (1962), 66–88.Suche in Google Scholar

Received: 2013-7-12
Accepted: 2013-10-23
Published Online: 2016-8-17
Published in Print: 2016-6-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Research Article
  2. On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups
  3. Research Article
  4. Characterization of hereditarily reversible posets
  5. Research Article
  6. Families of sets which can be represented as sublattices of the lattice of convex subsets of a linearly ordered set
  7. Research Article
  8. Diophantine equation X4+Y4 = 2(U4 + V4)
  9. Research Article
  10. On the congruent number problem over integers of cyclic number fields
  11. Research Article
  12. On the Diophantine equation x2 + C= yn for C = 2a3b17c and C = 2a13b17c
  13. Research Article
  14. Representations and evaluations of the error term in a certain divisor problem
  15. Research Article
  16. A construction of a Peano curve
  17. Research Article
  18. Compositions of ϱ-upper continuous functions
  19. Research Article
  20. Products of Świa̧tkowski functions
  21. Research Article
  22. Subclasses of meromorphically p-valent functions involving a certain linear operator
  23. Research Article
  24. Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments
  25. Research Article
  26. Oscillation criteria for higher order nonlinear delay dynamic equations on time scales
  27. Research Article
  28. On the solutions of a fourth order parabolic equation modeling epitaxial thin film growth
  29. Research Article
  30. Meromorphic solutions of q-shift difference equations
  31. Research Article
  32. Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales
  33. Research Article
  34. Multiplier spaces and the summing operator for series
  35. Research Article
  36. Weighted αβ-statistical convergence of Kantorovich-Mittag-Leffler operators
  37. Research Article
  38. The local spectral radius of a nonnegative orbit of compact linear operators
  39. Research Article
  40. A note on Lie product preserving maps on Mn(ℝ)
  41. Research Article
  42. On vector optimality conditions for constrained problems with -stable data
  43. Research Article
  44. Reparameterization of weakly nonlinear regression models with constraints
  45. Research Article
  46. Convolutions of polynomial kernels
  47. Research Article
  48. Closed form evaluation of sums containing squares of Fibonomial coefficients
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0154/html?lang=de
Button zum nach oben scrollen