Startseite Existence and uniqueness of solutions for perturbed stochastic differential equations with reflected boundary
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence and uniqueness of solutions for perturbed stochastic differential equations with reflected boundary

  • Faiz Bahaj EMAIL logo und Kamal Hiderah ORCID logo
Veröffentlicht/Copyright: 24. Oktober 2023

Abstract

In this paper, under some suitable conditions, we prove existence of a strong solution and uniqueness for the perturbed stochastic differential equations with reflected boundary (PSDERB), that is,

{ x ( t ) = x ( 0 ) + 0 t σ ( s , x ( s ) ) d B ( s ) + 0 t b ( s , x ( s ) ) d s + α ( t ) H ( max 0 u t x ( u ) ) + β ( t ) L t 0 ( x ) , x ( t ) 0 for all t 0 ,

where 𝐻 is a continuous R-valued function, σ , b , α and 𝛽 are measurable functions, L t 0 denotes a local time at point zero for the time of the semi-martingale 𝑥.

MSC 2010: 60H10; 60J60

Acknowledgements

We are thankful to the editor and the anonymous referee for very careful reading, and her/his valuable remarks and suggestions which led to the improvement of the article.

References

[1] R. Belfadli, S. Hamadène and Y. Ouknine, On one-dimensional stochastic differential equations involving the maximum process, Stoch. Dyn. 9 (2009), no. 2, 277–292. 10.1142/S0219493709002671Suche in Google Scholar

[2] M. Benabdallah and K. Hiderah, Strong rate of convergence for the Euler–Maruyama approximation of one-dimensional stochastic differential equations involving the local time at point zero, Monte Carlo Methods Appl. 24 (2018), no. 4, 249–262. 10.1515/mcma-2018-2021Suche in Google Scholar

[3] S. Bouhadou and Y. Ouknine, On the time inhomogeneous skew Brownian motion, Bull. Sci. Math. 137 (2013), no. 7, 835–850. 10.1016/j.bulsci.2013.02.001Suche in Google Scholar

[4] P. Carmona, F. Petit and M. Yor, Beta variables as times spent in [ 0 , [ by certain perturbed Brownian motions, J. Lond. Math. Soc. (2) 58 (1998), no. 1, 239–256. 10.1112/S0024610798006401Suche in Google Scholar

[5] L. Chaumont and R. A. Doney, Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion, Probab. Theory Related Fields 113 (1999), no. 4, 519–534. 10.1007/s004400050216Suche in Google Scholar

[6] L. Chaumont and R. A. Doney, Some calculations for doubly perturbed Brownian motion, Stochastic Process. Appl. 85 (2000), no. 1, 61–74. 10.1016/S0304-4149(99)00065-4Suche in Google Scholar

[7] B. Davis, Brownian motion and random walk perturbed at extrema, Probab. Theory Related Fields 113 (1999), no. 4, 501–518. 10.1007/s004400050215Suche in Google Scholar

[8] R. A. Doney, Some calculations for perturbed Brownian motion, Séminaire de Probabilités. XXXII, Lecture Notes in Math. 1686, Springer, Berlin (1998), 231–236. 10.1007/BFb0101760Suche in Google Scholar

[9] R. A. Doney and T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion processes, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 1, 107–121. 10.1016/j.anihpb.2004.03.005Suche in Google Scholar

[10] P. Étoré and M. Martinez, On the existence of a time inhomogeneous skew Brownian motion and some related laws, Electron. J. Probab. 17 (2012), 1–27. 10.1214/EJP.v17-1858Suche in Google Scholar

[11] P. Étoré and M. Martinez, Time inhomogeneous stochastic differential equations involving the local time of the unknown process, and associated parabolic operators, Stochastic Process. Appl. 128 (2018), no. 8, 2642–2687. 10.1016/j.spa.2017.09.018Suche in Google Scholar

[12] K. Hiderah, Carathéodory approximate solutions for a class of stochastic differential equations involving the local time at point zero with one-sided Lipschitz continuous drift coefficients, Monte Carlo Methods Appl. 28 (2022), no. 2, 189–198. 10.1515/mcma-2022-2107Suche in Google Scholar

[13] K. Hiderah, Existence and pathwise uniqueness of solutions for stochastic differential equations involving the local time at point zero, Stoch. Anal. Appl. 41 (2023), no. 2, 276–290. 10.1080/07362994.2021.2011317Suche in Google Scholar

[14] K. Hiderah, The truncated Euler–Maruyama method of one-dimensional stochastic differential equations involving the local time at point zero, Random Oper. Stoch. Equ. 31 (2023), no. 2, 141–152. 10.1515/rose-2023-2003Suche in Google Scholar

[15] K. Hiderah and M. Bourza, Carathéodory approximate solutions for a class of perturbed reflected stochastic differential equations with irregular coefficients, Stoch. Anal. Appl. 41 (2023), no. 3, 604–625. 10.1080/07362994.2022.2064306Suche in Google Scholar

[16] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss. 293, Springer, Berlin, 1991. 10.1007/978-3-662-21726-9Suche in Google Scholar

[17] W. Yue and T. Zhang, Absolute continuity of the laws of perturbed diffusion processes and perturbed reflected diffusion processes, J. Theoret. Probab. 28 (2015), no. 2, 587–618. 10.1007/s10959-013-0499-7Suche in Google Scholar

Received: 2022-12-09
Revised: 2023-09-19
Accepted: 2023-09-20
Published Online: 2023-10-24
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mcma-2023-2018/html?lang=de
Button zum nach oben scrollen