Abstract
Finite-dimensional (FD) models
References
[1] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968. Suche in Google Scholar
[2] H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes, John Wiley & Sons, New York, 1967. Suche in Google Scholar
[3] M. Grigoriu, Simulation of nonstationary Gaussian processes by random trigonometric polynomials, J. Engrg. Mech. 119 (1993), 328–343. 10.1061/(ASCE)0733-9399(1993)119:2(328)Suche in Google Scholar
[4] M. Grigoriu, Stochastic Calculus. Applications in Science and Engineering, Birkhäuser, Boston, 2002. 10.1007/978-0-8176-8228-6Suche in Google Scholar
[5] M. Grigoriu, Evaluation of Karhunen–Loève, spectral, and sampling representations for stochastic processes, J. Engrg. Mech. 132 (2006), no. 2, 179–189. 10.1061/(ASCE)0733-9399(2006)132:2(179)Suche in Google Scholar
[6] D. B. Hernández, Lectures on Probability and Second Order Random Fields, Ser. Adv. Math. Appl. Sci. 30, World Scientific, River Edge, 1995. 10.1142/2491Suche in Google Scholar
[7] K. Itô and M. Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka Math. J. 5 (1968), 35–48. Suche in Google Scholar
[8] T. T. Kadota, Term-by-term differentiability of Mercer’s expansion, Proc. Amer. Math. Soc. 18 (1967), 69–72. 10.1090/S0002-9939-1967-0203397-1Suche in Google Scholar
[9] V. A. Ogorodnikov and S. M. Prigarin, Numerical Modelling of Random Processes and Fields: Algorithms and Applications, VSP, Utrecht, 1996. 10.1515/9783110941999Suche in Google Scholar
[10] S. M. Prigarin, Spectral Models of Random Fields in Monte Carlo Simulation, VSP, Boston, 2001. 10.1515/9783110941982Suche in Google Scholar
[11] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974. Suche in Google Scholar
[12] K. K. Sabelfeld, Random Fields and Stochastic Lagrangian Models. Analysis and Applications in Turbulence and Porous Media, Walter de Gruyter, Berlin, 2012. 10.1515/9783110296815Suche in Google Scholar
[13] G. Samorodnitsky, Probability tails of Gaussian extrema, Stochastic Process. Appl. 38 (1991), no. 1, 55–84. 10.1016/0304-4149(91)90072-KSuche in Google Scholar
[14] G. P. Tolstov, Fourier Series, Dover, New York, 1962. Suche in Google Scholar
[15] H. Xu and M. Grigoriu, Finite dimensional models for extremes of Gaussian and non-Gaussian processes, Probab. Engrg. 68 (2022), 10.1016/j.probengmech.2022.103199. 10.1016/j.probengmech.2022.103199Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A time-step-robust algorithm to compute particle trajectories in 3-D unstructured meshes for Lagrangian stochastic methods
- Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes
- Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation
- A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy
- Linking the Monte Carlo radiative transfer algorithm to the radiative transfer equation
Artikel in diesem Heft
- Frontmatter
- A time-step-robust algorithm to compute particle trajectories in 3-D unstructured meshes for Lagrangian stochastic methods
- Monte Carlo estimates of extremes of stationary/nonstationary Gaussian processes
- Two stochastic algorithms for solving elastostatics problems governed by the Lamé equation
- A Metropolis random walk algorithm to estimate a lower bound of the star discrepancy
- Linking the Monte Carlo radiative transfer algorithm to the radiative transfer equation