Startseite Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Monte-Carlo algorithms for a forward Feynman–Kac-type representation for semilinear nonconservative partial differential equations

  • Anthony Le Cavil , Nadia Oudjane und Francesco Russo EMAIL logo
Veröffentlicht/Copyright: 26. Januar 2018

Abstract

The paper is devoted to the construction of a probabilistic particle algorithm. This is related to a nonlinear forward Feynman–Kac-type equation, which represents the solution of a nonconservative semilinear parabolic partial differential equation (PDE). Illustrations of the efficiency of the algorithm are provided by numerical experiments.

Award Identifier / Grant number: CRC 1283

Funding statement: The financial support for the third-named author was partially provided by the DFG through the CRC 1283, “Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their application”.

A Appendix

Proof of Lemma 3.5.

Let us fix ε > 0 , N and t [ 0 , T ] . We first recall that for almost all x d ,

(A.1) u ¯ t ε , N ( x ) = 1 N i = 1 N K ε ( x - ξ ¯ t i ) V ¯ t ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) ) ,

for which V ¯ t is given by (3.7). Let us fix i { 1 , , N } .

Proof of (3.12). We only give details for the proof of the first inequality since the second one can be established through similar arguments.

From equation (A.1) we have

| u ¯ r ( t ) ε , N ( x ) - u ¯ r ( t ) ε , N ( y ) | 1 N i = 1 N | K ε ( x - ξ ¯ r ( t ) i ) - K ε ( y - ξ ¯ r ( t ) i ) | V ¯ r ( t ) ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) )
e M Λ T N ε d + 1 i = 1 N L K | x - y |
e M Λ T L K ε d + 1 | x - y | ,

where for the second step above we have used the fact that K is in particular Lipschitz. The same arguments lead also to

| u ¯ r ( t ) ε , N ( x ) - u ¯ r ( t ) ε , N ( y ) | e M Λ T L K ε d + 2 | x - y | ,

which concludes the proof of (3.12).

Proof of (3.13). From

(A.2) u ¯ t ε , N ( x ) = 1 N i = 1 N K ε ( x - ξ ¯ t i ) V ¯ t ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) ) , x d ,

we deduce, for almost all x d ,

| u ¯ t ε , N ( x ) - u ¯ r ( t ) ε , N ( x ) | e M Λ T N i = 1 N | K ε ( x - ξ ¯ t i ) - K ε ( x - ξ ¯ r ( t ) i ) |
+ K N ε d i = 1 N | V ¯ t ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) ) - V ¯ r ( t ) ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) ) | .

Since K is Lipschitz with related constant L K = K , for almost all x d we obtain

| u ¯ t ε , N ( x ) - u ¯ r ( t ) ε , N ( x ) |
(A.3) L K e M Λ T N ε d + 1 i = 1 N | ξ ¯ t i - ξ ¯ r ( t ) i | + L Λ e M Λ T K N ε d i = 1 N r ( t ) t Λ ( r ( s ) , ξ ¯ r ( s ) i , u ¯ r ( s ) ε , N ( ξ ¯ r ( s ) i ) , u ¯ r ( s ) ε , N ( ξ ¯ r ( s ) i ) ) 𝑑 s ,

where the second term in (A.3) comes from inequality (2.3). Since Λ is bounded, taking the supremum with respect to x and the expectation on both sides of inequality (A.3), we have

𝔼 [ u ¯ t ε , N - u ¯ r ( t ) ε , N ] L K e M Λ T N ε d + 1 i = 1 N 𝔼 [ | ξ ¯ t i - ξ ¯ r ( t ) i | ] + L Λ e M Λ T K ε d M Λ δ t C δ t ε d + 1 ,

where we have used the fact that

𝔼 [ | ξ ¯ s i - ξ ¯ r ( s ) i | 2 ] C δ t

since Φ and g are bounded.

The bound of 𝔼 [ u ¯ t ε , N - u ¯ r ( t ) ε , N ] is obtained by proceeding exactly in the same way as above, starting with

u ¯ t ε , N x ( ) = 1 N ε i = 1 N K ε x ( - ξ ¯ t i ) V ¯ t ( ξ ¯ i , u ¯ ε , N ( ξ ¯ i ) , u ¯ ε , N ( ξ ¯ i ) ) , l = 1 , , d ,

instead of (A.2), where x denotes the -th coordinate of x d . Then

𝔼 [ u ¯ t ε , N - ¯ u r ( t ) ε , N ] C δ t ε d + 2

follows. ∎

References

[1] N. Belaribi, F. Cuvelier and F. Russo, A probabilistic algorithm approximating solutions of a singular PDE of porous media type, Monte Carlo Methods Appl. 17 (2011), no. 4, 317–369. 10.1515/mcma.2011.014Suche in Google Scholar

[2] N. Belaribi, F. Cuvelier and F. Russo, Probabilistic and deterministic algorithms for space multidimensional irregular porous media equation, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 1, 3–62. 10.1007/s40072-013-0001-7Suche in Google Scholar

[3] A. Bensoussan, S. P. Sethi, R. Vickson and N. Derzko, Stochastic production planning with production constraints, SIAM J. Control Optim. 22 (1984), no. 6, 920–935. 10.1137/0322060Suche in Google Scholar

[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control. The Discrete Time Case, Math. Sci. Eng. 139, Academic Press, New York, 1978. Suche in Google Scholar

[5] M. Bossy, L. Fezoui and S. Piperno, Comparison of a stochastic particle method and a finite volume deterministic method applied to Burgers equation, Monte Carlo Methods Appl. 3 (1997), no. 2, 113–140. 10.1515/mcma.1997.3.2.113Suche in Google Scholar

[6] M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: Application to the Burgers equation, Ann. Appl. Probab. 6 (1996), no. 3, 818–861. 10.1214/aoap/1034968229Suche in Google Scholar

[7] B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl. 111 (2004), no. 2, 175–206. 10.1016/j.spa.2004.01.001Suche in Google Scholar

[8] P. Cheridito, H. M. Soner, N. Touzi and N. Victoir, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Comm. Pure Appl. Math. 60 (2007), no. 7, 1081–1110. 10.1002/cpa.20168Suche in Google Scholar

[9] F. Delarue and S. Menozzi, An interpolated stochastic algorithm for quasi-linear PDEs, Math. Comp. 77 (2008), no. 261, 125–158. 10.1090/S0025-5718-07-02008-XSuche in Google Scholar

[10] E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab. 15 (2005), no. 3, 2172–2202. 10.1214/105051605000000412Suche in Google Scholar

[11] A. G. Gray and A. W. Moore, Nonparametric density estimation: Toward computational tractability, Proceedings of the 2003 SIAM International Conference on Data Mining, SIAM, Philadelphia (2003), 203–211. 10.1137/1.9781611972733.19Suche in Google Scholar

[12] P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, preprint (2012), http://ssrn.com/abstract=1995503. 10.2139/ssrn.1995503Suche in Google Scholar

[13] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi and X. Warin, Branching diffusion representation of semilinear pdes and Monte Carlo approximations, preprint (2016), https://arxiv.org/abs/1603.01727v1. 10.1214/17-AIHP880Suche in Google Scholar

[14] P. Henry-Labordère, X. Tan and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Process. Appl. 124 (2014), no. 2, 1112–1140. 10.1016/j.spa.2013.10.005Suche in Google Scholar

[15] B. Jourdain and S. Méléard, Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998), no. 6, 727–766. 10.1016/S0246-0203(99)80002-8Suche in Google Scholar

[16] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. (New York) 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Suche in Google Scholar

[17] A. Le Cavil, N. Oudjane and F. Russo, Probabilistic representation of a class of non-conservative nonlinear partial differential equations, ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 2, 1189–1233. 10.30757/ALEA.v13-43Suche in Google Scholar

[18] A. Le Cavil, N. Oudjane and F. Russo, Forward Feynman–Kac type representation for semilinear nonconservative partial differential equations, preprint (2017), https://hal.archives-ouvertes.fr/hal-01353757v3/document. Suche in Google Scholar

[19] A. Le Cavil, N. Oudjane and F. Russo, Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations, Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017), no. 1, 1–37. 10.1007/s40072-016-0079-9Suche in Google Scholar

[20] E. Pardoux, Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order, Stochastic Analysis and Related Topics VI (Geilo 1996), Progr. Probab. 42, Birkhäuser, Boston (1998), 79–127. 10.1007/978-1-4612-2022-0_2Suche in Google Scholar

[21] E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. 14 (1990), no. 1, 55–61. 10.1016/0167-6911(90)90082-6Suche in Google Scholar

[22] E. Pardoux and A. Răşcanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stoch. Model. Appl. Probab. 69, Springer, Cham, 2014. 10.1007/978-3-319-05714-9Suche in Google Scholar

[23] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Monogr. Statist. Appl. Probab., Chapman & Hall, London, 1986. Suche in Google Scholar

Received: 2017-09-13
Accepted: 2018-01-05
Published Online: 2018-01-26
Published in Print: 2018-03-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mcma-2018-0005/html
Button zum nach oben scrollen