Home Variation in leukocyte indices and immunoglobulin levels according to host density, sex, flea burden and tularemia prevalence in the common vole Microtus arvalis
Article
Licensed
Unlicensed Requires Authentication

Variation in leukocyte indices and immunoglobulin levels according to host density, sex, flea burden and tularemia prevalence in the common vole Microtus arvalis

  • François Mougeot , Manuel B. Morales EMAIL logo , María José Pérez Álvarez , Miguel Muñoz López , Ruth Rodríguez-Pastor and Juan José Luque-Larena
Published/Copyright: January 3, 2024

Abstract

Rodent populations often undergo large, regular fluctuations. We studied immunological condition and physiological stress in the common vole and how it varied with environmental factors linked with population fluctuations, namely flea and Francisella tularensis (the bacterium causing tularemia) prevalence. We used two leukocyte indices, neutrophil-to-lymphocyte ratio (N:L) and proportion of eosinophils, as physiological long-term stress indicators, and measured levels of immunoglobulins (Ig) as a generic index of immunological condition. Leukocyte indices showed a hump-shaped relationship with Ig levels, consistent with an interdependence between physiological stress and immunological condition. N:L was negatively associated with vole density only in males. Eosinophil proportion was explained by the interaction between flea burden and tularemia prevalence, with highest levels in flea-infested voles also infected with tularemia. Ig levels did not vary with sex or flea prevalence but increased in tularemia-infected voles. When Ig levels were included as covariates in our models, the associations between leukocyte indices and environmental factors remained significant. Results suggest sex-specific associations between physiological stress and population density, and an influence of tularemia infection depending on ectoparasite load. We recommend using immunological parameters complementarily to leukocyte indices when studying physiological stress and infection dynamics in wild populations.


Corresponding author: Manuel B. Morales, Departamento de Ecología and Research Centre in Biodiversity and Global Change, Universidad Autónoma de Madrid (Edificio de Biología), C/Darwin 2, 28049 Madrid, Spain, E-mail:

Funding source: MINECO of Spain

Award Identifier / Grant number: (projects ECOTULA CGL2015-66962-C2-1-R, BOOMRAT PID2019-109327RB-I00 and RATALERT PID2022-136850NB-I00)

Funding source: The Comunidad de Madrid (REMEDINAL 3)

Acknowledgments

We thank JL Guzmán, J Caro, J Romairone, MF Flechoso and R Escudero for their help with fieldwork, ectoparasite identification and tularemia detection. We also thank AI López-Archilla for her assistance with inverted microscopy.

  1. Research ethics: All the necessary ethic and capture permits for these procedures were provided by the Government of Castilla y León (Consejería de Fomento y Medio Ambiente, Junta de Castilla y León). The protocol for vole euthanasia was approved by the Universidad de Valladolid ethics committee (CEEBA, authorization code: 4801646). FM, RRP and JJLL held animal experimentation permits of level C for Spain. Common voles’ carcasses are currently kept at the University of Valladolid (Escuela Técnica Superior de Ingenieros Agrónomos, campus of Palencia, Spain) under the custody of Prof. Juan José Luque Larena.

  2. Author contributions: FM, JJLL, MJPA and MBM conceptualized the study, RRP, FM and JJLL captured and processed the voles at the laboratory, MML examined all blood smears and run the Ig electrophoresis experiments under the supervision of MJPA. RRP was responsible for the molecular Tularemia infection detection. FM analyzed the data. FM, MBM and MJPA wrote the ms and all authors reviewed and commented on successive versions.

  3. Competing interests: The authors state that there is no conflict of interest regarding this manuscript.

  4. Research funding: Funding was provided by the MINECO of Spain (projects ECOTULA CGL2015-66962-C2-1-R, BOOMRAT PID2019-109327RB-I00 and RATALERT PID2022-136850NB-I00) and the Comunidad de Madrid (REMEDINAL 3).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Axelrod, J. and Reisine, T. (1984). Stress hormones: their interaction and regulation. Science 224: 452–459, https://doi.org/10.1126/science.6143403.Search in Google Scholar PubMed

Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M., and Begon, M. (2008a). The dynamics of health in wild field vole populations: a haematological perspective. J. Anim. Ecol. 77: 984–997, https://doi.org/10.1111/j.1365-2656.2008.01413.x.Search in Google Scholar PubMed PubMed Central

Beldomenico, P.M., Telfer, S., Gebert, S., Lukomski, L., Bennett, M., and Begon, M. (2008b). Poor condition and infection: a vicious circle in natural populations. Proc. R. Soc. B 275: 1753–1759, https://doi.org/10.1098/rspb.2008.0147.Search in Google Scholar PubMed PubMed Central

Blondel, D.V., Wallace, G.N., Calderone, S., Gorinshteyn, M., St. Mary, C.M., and Phelps, S.M. (2016). Effects of population density on corticosterone levels of prairie voles in the field. Gen. Comp. Endocrinol. 225: 13–22, https://doi.org/10.1016/j.ygcen.2015.09.002.Search in Google Scholar PubMed PubMed Central

Carrasco, G.A. and Van de Kar, L.D. (2003). Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 463: 235–272, https://doi.org/10.1016/s0014-2999(03)01285-8.Search in Google Scholar PubMed

Cattet, M.R.L., Christison, K., Caulkett, N.A., and Stenhouse, G.B. (2003). Physiologic responses of grizzly bears to different methods of capture. J. Wildl. Dis. 39: 649–654, https://doi.org/10.7589/0090-3558-39.3.649.Search in Google Scholar PubMed

Charbonnel, N., Chaval, Y., Berthier, K., Deter, J., Morand, S., Palme, R., and Cosson, J.F. (2008a). Stress and demographic decline: a potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiol. Biochem. Zool. 81: 63–73, https://doi.org/10.1086/523306.Search in Google Scholar PubMed

Charbonnel, N., Deter, J., Chaval, Y., Laakkonen, J., Henttonen, H., Voutilainen, L., Vapalahti, O., Vaheri, A., Morand, S., and Cosson, J.F. (2008b). Serological evidence of viruses naturally associated with the montane water vole (Arvicola scherman) in eastern France. Vector-Borne Zoonotic Dis. 8: 763–767, https://doi.org/10.1089/vbz.2007.0167.Search in Google Scholar PubMed

Cleveland, D.W., Fischer, S.G., Kirschner, M.W., and Laemmli, U.K. (1977). Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252: 1102–1106, https://doi.org/10.1016/s0021-9258(19)75212-0.Search in Google Scholar

Coutinho, A.E. and Chapman, K.E. (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol. Cell. Endocrinol. 335: 2–13, https://doi.org/10.1016/j.mce.2010.04.005.Search in Google Scholar PubMed PubMed Central

Davis, A.K., Maney, D.L., and Maerz, J.C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct. Ecol. 22: 760–772, https://doi.org/10.1111/j.1365-2435.2008.01467.x.Search in Google Scholar

Delehanty, B. and Boonstra, R. (2009). Impact of live trapping on stress profiles of Richardson’s ground squirrel (Spermophilus richardsonii). Gen. Comp. Endocrinol. 160: 176–182, https://doi.org/10.1016/j.ygcen.2008.11.011.Search in Google Scholar PubMed

Devevey, G., Niculita-Hirzel, H., Biollaz, F., Yvon, C., Chapuisat, M., and Christe, P. (2008). Developmental, metabolic and immunological costs of flea infestation in the common vole. Funct. Ecol. 22: 1091–1098, https://doi.org/10.1111/j.1365-2435.2008.01493.x.Search in Google Scholar

Devevey, G. and Christe, P. (2009). Flea infestation reduces the life span of the common vole. Parasitology 136: 1351–1355, https://doi.org/10.1017/s0031182009990746.Search in Google Scholar

Devevey, G., Chapuisat, M., and Christe, P. (2009). Longevity differs among sexes but is not affected by repeated immune activation in voles (Microtus arvalis). Biol. J. Linn. Soc. 97: 328–333, https://doi.org/10.1111/j.1095-8312.2009.01216.x.Search in Google Scholar

Devries, A.C., Gerber, J.M., Richardson, H.N., Moffatt, C.A., Demas, G.E., Taymans, S.E., and Nelson, R.J. (1997). Stress affects corticosteroid and immunoglobulin concentrations in male house mice (Mus musculus) and prairie voles (Microtus ochrogaster). Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 118: 655–663, https://doi.org/10.1016/s0300-9629(97)87355-0.Search in Google Scholar PubMed

Dhabhar, F.S., Malarkey, W.B., Neri, E., and Mcewen, B.S. (2012). Stress-induced redistribution of immune cells—from barracks to boulevards to battlefields: a tale of three hormones – Curt Richter Award Winner. Psychoneuroendocrinology 37: 1345–1368, https://doi.org/10.1016/j.psyneuen.2012.05.008.Search in Google Scholar PubMed PubMed Central

Dobrowolska, A. and Adamczewska-Andrzejewska, K.A. (1991). Seasonal and long-term changes in serum gamma-globulin levels in comparing the physiology and population density of the common vole, Microtus arvalis Pall. J. Interdiscip. Cycle Res. 22: 1–19, https://doi.org/10.1080/09291019109360094.Search in Google Scholar

Du, S.Y., Cao, Y.F., Nie, X.H., Wu, Y., and Bian, J.H. (2016). The synergistic effect of density stress during the maternal period and adulthood on immune traits of root vole (Microtus oeconomus) individuals-a field experiment. Oecologia 181: 335–346, https://doi.org/10.1007/s00442-015-3445-9.Search in Google Scholar PubMed

Ensminger, D.C., Crocker, D.E., Lam, E.K., Allen, K.N., and Vázquez-Medina, J.P. (2021). Repeated stimulation of the HPA axis alters white blood cell count without increasing oxidative stress or inflammatory cytokines in fasting elephant seal pups. J. Exp. Biol. 224, https://doi.org/10.1242/jeb.243198.Search in Google Scholar PubMed

Escudero, R., Toledo, A., Gil, H., Kovácsová, K., Rodríguez-Vargas, M., Jado, I., García-Amil, C., Lobo, B., Bhide, M., and Anda, P. (2008). Molecular method for discrimination between Francisella tularensis and Francisella-like endosymbionts. J. Clin. Microbiol. 46: 3139–3143, https://doi.org/10.1128/jcm.00275-08.Search in Google Scholar

Forbes, K.M., Stuart, P., Mappes, T., Hoset, K.S., Henttonen, H., and Huitu, O. (2014). Diet quality limits summer growth of field vole populations. PLoS One 9: e91113, https://doi.org/10.1371/journal.pone.0091113.Search in Google Scholar PubMed PubMed Central

Gelling, M., Mclaren, G.W., Mathews, F., Mian, R., and Macdonald, D.W. (2009). Impact of trapping and handling on leukocyte coping capacity in bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus). Anim. Welfare 18: 1–7, https://doi.org/10.1017/s0962728600000014.Search in Google Scholar

Goessling, J.M., Kennedy, H., Mendonça, M.T., and Wilson, A.E. (2015). A meta-analysis of plasma corticosterone and heterophil: lymphocyte ratios – is there conservation of physiological stress responses over time? Funct. Ecol. 29: 1189–1196, https://doi.org/10.1111/1365-2435.12442.Search in Google Scholar

Gutiérrez, R., Krasnov, B., Morick, D., Gottlieb, Y., khokhlova, I.S., and Harrus, S. (2015). Bartonella infection in rodents and their flea ectoparasites: an overview. Vector-Borne Zoonotic Dis. 15: 27–39, https://doi.org/10.1089/vbz.2014.1606.Search in Google Scholar PubMed PubMed Central

Herrero-Cófreces, S., Mougeot, F., Lambin, X., and Luque-Larena, J.J. (2021). Linking zoonosis emergence to farmland invasion by fluctuating herbivores: common vole populations and tularemia outbreaks in NW Spain. Front. Vet. Sci. 8: 698454, https://doi.org/10.3389/fvets.2021.698454.Search in Google Scholar PubMed PubMed Central

Huitu, O., Jokinen, I., Korpimäki, E., Koskela, E., and Mappes, T. (2007). Phase dependence in winter physiological condition of cyclic voles. Oikos 116: 565–577, https://doi.org/10.1111/j.0030-1299.2007.15488.x.Search in Google Scholar

Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B., and Mougeot, F. (2014). A comparison of methods for estimating common vole (Microtus arvalis) abundance in agricultural habitats. Ecol. Indic. 36: 111–119, https://doi.org/10.1016/j.ecolind.2013.07.019.Search in Google Scholar

Jareño, D., Viñuela, J., Luque-Larena, J.J., Arroyo, L., Arroyo, B., and Mougeot, F. (2015). Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 17: 2315–2327, https://doi.org/10.1007/s10530-015-0877-4.Search in Google Scholar

Khokhlova, I.S., Krasnov, B.R., Kam, M., Burdelova, N.I., and Degen, A.A. (2002). Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. J. Zool. 258: 349–354, https://doi.org/10.1017/s0952836902001498.Search in Google Scholar

Krebs, C.J. (2013). Population fluctuations in rodents. University of Chicago Press, Chicago.10.7208/chicago/9780226010496.001.0001Search in Google Scholar

Książek, A., Zub, K., Szafrańska, P.A., Wieczorek, M., and Konarzewski, M. (2014). Immunocompetence and high metabolic rates enhance overwinter survival in the root vole, Microtus oeconomus. Biol. Lett. 10: 20140684, https://doi.org/10.1098/rsbl.2014.0684.Search in Google Scholar PubMed PubMed Central

Książek, A., Zub, K., Szafrańska, P.A., Wieczorek, M., and Konarzewski, M. (2017). The nexus of hair corticosterone level, immunocompetence, metabolic rates and overwinter survival in the root vole, Microtus oeconomus. Gen. Comp. Endocrinol. 250: 46–53, https://doi.org/10.1016/j.ygcen.2017.05.021.Search in Google Scholar PubMed

Lam, J.H., Smith, F.L., and Baumgarth, N. (2020). B cell activation and response regulation during viral infections. Viral Immunol. 33: 294–306, https://doi.org/10.1089/vim.2019.0207.Search in Google Scholar PubMed PubMed Central

Lauret, V., Delibes-Mateos, M., Mougeot, F., and Arroyo-Lopez, B. (2020). Understanding conservation conflicts associated with rodent outbreaks in farmland areas. Ambio 49: 1122–1133, https://doi.org/10.1007/s13280-019-01256-0.Search in Google Scholar PubMed PubMed Central

Lazutkin, A.N., Yamborko, A.V., and Kiselev, S.V. (2016). Energy and immune parameters of northern red-backed voles (Clethrionomys rutilus) at different population densities in the Kolyma River basin. Russ. J. Ecol. 47: 562–567, https://doi.org/10.1134/s1067413616060102.Search in Google Scholar

Lochmiller, R.L. (1996). Immunocompetence and animal population regulation. Oikos 76: 594–602, https://doi.org/10.2307/3546356.Search in Google Scholar

Luque-Larena, J.J., Mougeot, F., Viñuela, J., Jareño, D., Arroyo, L., Lambin, X., and Arroyo, B. (2013). Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14: 432–441, https://doi.org/10.1016/j.baae.2013.04.006.Search in Google Scholar

Luque-Larena, J., Mougeot, F., Roig Dolors, V., Lambin, X., Rodríguez-Pastor, R., Rodríguez-Valín, E., Anda, P., and Escudero, R. (2015). Tularemia outbreaks and common vole (Microtus arvalis) irruptive population dynamics in northwestern Spain, 1997–2014. Vector-Borne Zoonotic Dis. 15: 568–570, https://doi.org/10.1089/vbz.2015.1770.Search in Google Scholar PubMed

Luque-Larena, J.J., Mougeot, F., Arroyo, B., Vidal, M.D., Rodríguez-Pastor, R., Escudero, R., Anda, P., and Lambin, X. (2017). Irruptive mammal host populations shape tularemia epidemiology. PLoS Pathog. 13: e1006622, https://doi.org/10.1371/journal.ppat.1006622.Search in Google Scholar PubMed PubMed Central

Luque-Larena, J.J., Mougeot, F., Arroyo, B., and Lambin, X. (2018). “Got rats?” Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production. Global Change Biol. 24: 2752–2754, https://doi.org/10.1111/gcb.14170.Search in Google Scholar PubMed

Morick, D., Krasnov, B.R., Khokhlova, I.S., Gottlieb, Y., and Harrus, S. (2011). Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera: Pulicidae). Mol. Ecol. 20: 2864–2870, https://doi.org/10.1111/j.1365-294x.2011.05033.x.Search in Google Scholar PubMed

Mougeot, F., Lambin, X., Rodríguez-Pastor, R., Romairone, J., and Luque-Larena, J.J. (2019). Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100: e02776, https://doi.org/10.1002/ecy.2776.Search in Google Scholar PubMed

Myers, J.H. (2018). Population cycles: generalities, exceptions and remaining mysteries. Proc. R. Soc. B 285: 20172841, https://doi.org/10.1098/rspb.2017.2841.Search in Google Scholar PubMed PubMed Central

Nieminen, P., Huitu, O., Henttonen, H., Finnilä, M.A.J., Voutilainen, L., Itämies, J., Kärjä, V., Saarela, S., Halonen, T., Aho, J., et al.. (2015). Physiological condition of bank voles (Myodes glareolus) during the increase and decline phases of the population cycle. Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 187: 141–149, https://doi.org/10.1016/j.cbpa.2015.05.007.Search in Google Scholar PubMed

Reynolds, P.S. (1992). White blood cell profiles as a means of evaluating transmitter-implant Surgery in small mammals. J. Mammal. 73: 178–185, https://doi.org/10.2307/1381881.Search in Google Scholar

Rodríguez-Pastor, R., Luque-Larena, J.J., Lambin, X., and Mougeot, F. (2016). “Living on the edge”: the role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland. Agric., Ecosyst. Environ. 231: 206–217, https://doi.org/10.1016/j.agee.2016.06.041.Search in Google Scholar

Rodríguez-Pastor, R., Escudero, R., Dolors, V.D, Mougeot, F., Arroyo, B., Lambin, X., Av, V.-C., Rodríguez-Moreno, I., Anda, P., Luque-Larena, J., et al.. (2017). Density-dependent prevalence of Francisella tularensis in fluctuating vole populations, northwestern Spain. Emerging Infect. Dis. J. 23: 1377, https://doi.org/10.3201/eid2308.161194.Search in Google Scholar PubMed PubMed Central

Rodríguez-Pastor, R., Escudero, R., Lambin, X., Vidal, M.D., Gil, H., Jado, I., Rodríguez-Vargas, M., Luque-Larena, J.J., and Mougeot, F. (2019a). Zoonotic pathogens in fluctuating common vole (Microtus arvalis) populations: occurrence and dynamics. Parasitology 146: 389–398, https://doi.org/10.1017/s0031182018001543.Search in Google Scholar

Rodríguez-Pastor, R., Mougeot, F., Vidal, M.D., Jado, I., González-Martín-Niño, R.M., Escudero, R., and Luque-Larena, J.J. (2019b). Zoonotic bacteria in fleas parasitizing common voles, northwestern Spain. Emerging Infect. Dis. 25: 1423–1425, https://doi.org/10.3201/eid2507.181646.Search in Google Scholar PubMed PubMed Central

Rogovin, K., Randall, J.A., Kolosova, I., and Moshkin, M. (2003). Social correlates of stress in adult males of the great gerbil, Rhombomys opimus, in years of high and low population densities. Horm. Behav. 43: 132–139, https://doi.org/10.1016/s0018-506x(02)00028-4.Search in Google Scholar PubMed

Romairone, J., Jiménez, J., Luque-Larena, J.J., and Mougeot, F. (2018). Spatial capture-recapture design and modelling for the study of small mammals. PLoS One 13: e0198766, https://doi.org/10.1371/journal.pone.0198766.Search in Google Scholar PubMed PubMed Central

Romero, L.M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19: 249–255, https://doi.org/10.1016/j.tree.2004.03.008.Search in Google Scholar PubMed

Sapolsky, R.M., Romero, L.M., and Munck, A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21: 55–89, https://doi.org/10.1210/edrv.21.1.0389.Search in Google Scholar PubMed

Scotti, M.-A.L., Carlton, E.D., Demas, G.E., and Grippo, A.J. (2015). Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster). Horm. Behav. 70: 7–13, https://doi.org/10.1016/j.yhbeh.2015.01.004.Search in Google Scholar PubMed PubMed Central

Sheldon, B.C. and Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. Evol. 11: 317–321, https://doi.org/10.1016/0169-5347(96)10039-2.Search in Google Scholar PubMed

Smith, A., Telfer, S., Burthe, S., Bennett, M., and Begon, M. (2006). A role for vector-independent transmission in rodent trypanosome infection? Int. J. Parasitol. 36: 1359–1366, https://doi.org/10.1016/j.ijpara.2006.06.014.Search in Google Scholar PubMed

Taves, M.D., Hamden, J.E., and Soma, K.K. (2017). Local glucocorticoid production in lymphoid organs of mice and birds: functions in lymphocyte development. Horm. Behav. 88: 4–14, https://doi.org/10.1016/j.yhbeh.2016.10.022.Search in Google Scholar PubMed

Telfer, S., Begon, M., Bennett, M., Bown, K.J., Burthe, S., Lambin, X., Telford, G., and Birtles, R. (2007). Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics. Parasitology 134: 413–425, https://doi.org/10.1017/s0031182006001624.Search in Google Scholar PubMed PubMed Central

Vitousek, M.N., Taff, C.C., Hallinger, K.K., Zimmer, C., and Winkler, D.W. (2018). Hormones and fitness: evidence for trade-offs in glucocorticoid regulation across Contexts. Front. Ecol. Evol. 6, https://doi.org/10.3389/fevo.2018.00042.Search in Google Scholar

Warburton, E., Khokhlova, I., Palme, R., Surkova, E., Van Der Mescht, L., and Krasnov, B. (2020). Flea infestation, social contact, and stress in a gregarious rodent species: minimizing the potential parasitic costs of group-living. Parasitology 147: 78–86, https://doi.org/10.1017/s0031182019001185.Search in Google Scholar PubMed PubMed Central

Warburton, E., Khokhlova, I., Palme, R., Surkova, E., and Krasnov, B. (2021). Effects of ectoparasite infestation during pregnancy on physiological stress and reproductive output in a rodent-flea system. Int. J. Parasitol. 51: 659–666, https://doi.org/10.1016/j.ijpara.2020.12.005.Search in Google Scholar PubMed

Warton, D.I. and Hui, F.K.C. (2011). The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10, https://doi.org/10.1890/10-0340.1.Search in Google Scholar PubMed

Yeager, M.P., Guyre, P.M., and Munck, A.U. (2004). Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol. Scand. 48: 799–813, https://doi.org/10.1111/j.1399-6576.2004.00434.x.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/mammalia-2023-0090).


Received: 2023-07-23
Accepted: 2023-11-24
Published Online: 2024-01-03
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Ecology
  3. Insights into surveying pangolins using ground and arboreal camera traps
  4. Reproductive aspects of female Andean bears (Tremarctos ornatus) in the Chingaza massif, eastern range of the Colombian Andes
  5. Using photo by-catch data to reliably estimate spotted hyaena densities over time
  6. Review of ocular alterations in bats in America and notes on a new case for Saccopteryx bilineata (Chiroptera: Emballonuridae)
  7. New dietary records for the rare Thomas’s Flying Squirrel (Aeromys thomasi, Sciuridae: Pteromyini) from Sabah, Malaysian Borneo
  8. A treetop diner: camera trapping reveals novel arboreal foraging by fishing cats on colonial nesting birds in Bangladesh
  9. First albino white-eared opossums in the Caatinga, Northeastern Brazil: records of albinism in Didelphis albiventris (Lund, 1840)
  10. Physiology
  11. Variation in leukocyte indices and immunoglobulin levels according to host density, sex, flea burden and tularemia prevalence in the common vole Microtus arvalis
  12. Evolutionary Biology
  13. Morphological symmetry of Rhipidomys mastacalis (Mammalia, Rodentia, Cricetidae) in fragmented habitats of the Atlantic Forest in Northeastern Brazil: a study on the influence of the environment on an endemic species
  14. Biogeography
  15. Brandt’s Hedgehog, Paraechinus hypomelas (Brandt, 1836), new to the mammal fauna of Iraq
  16. Taxonomy/Phylogeny
  17. Resolving the taxonomic status of Ctenomys paramilloensis (Rodentia, Ctenomyidae), an Andean nominal form from Mendoza Province, Argentina
Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2023-0090/html
Scroll to top button