Startseite Understanding habitat suitability and road mortality for the conservation of the striped hyaena (Hyaena hyaena) in Batna (East Algeria)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Understanding habitat suitability and road mortality for the conservation of the striped hyaena (Hyaena hyaena) in Batna (East Algeria)

  • Katia Selmoun-Ourdani EMAIL logo , Arjun Dheer ORCID logo , Mokrane Karar , Said Fritas , Mansour Amroun , Nabila Zemmouri-Boukhemza ORCID logo , Kahina Mallil und Ingrid Wiesel
Veröffentlicht/Copyright: 10. Mai 2024
Mammalia
Aus der Zeitschrift Mammalia Band 88 Heft 5

Abstract

The determination of suitable habitats and roadkill hotspots allows for the prioritization of areas of conservation and the identification of road sections that require appropriate planning and development. Understanding the factors that influence the species’ presence and those contributing to its road-related fatalities is crucial. This study demonstrates the use of MaxEnt modeling to map the potential distribution of the striped hyaena (Hyaena hyaena) in Batna province (East Algeria) using occurrence records and a set of environmental variables. The results indicated that the two primary environmental variables that influence the distribution of the species are the shrubland, and the slope with a contribution of 37.5 and 30.2 %, respectively, followed by built-up areas (12 %) and distance to roads (7.2 %). The species may occupy steep terrain with shrubland near anthropized areas. Road collisions represent a threat to the species, with 28 documented casualties from 2010 to 2020 in Batna. The kernel density estimation revealed an important roadkill hotspot along the national roads 3 and 28. This study represents a preliminary step for the use of wildlife ecological niche modeling and road management in Algeria.


Corresponding author: Katia Selmoun-Ourdani, Laboratory of Ecology and Biology of Terrestrial Ecosystems, University of Tizi-Ouzou, Tizi-Ouzou, 15000, Algeria, E-mail:

Acknowledgments

We would like to extend our gratitude to the Forest Conservation of Batna and the Belezma National Park for providing the essential material and human resources necessary for conducting this study. We pay homage to the late Dr. Messaoudene M., who instilled in us a deep appreciation for work and nature. Our thanks also go to the foresters from various districts, especially Mr. Taher Mebarki, who bravely overcame field challenges to help us gather as much data as possible. Additionally, we are grateful to the members of our research laboratory at the University of Tizi-Ouzou, whose support was indispensable to this study. We would like to express our heartfelt thanks to Mr. Said Abderrahmani, the former director of BNP, to Mr. Athmane Briki, and to Karim Gaagaa, who were pivotal in initiating my field study. Our appreciation extends to the entire team of photographers and wildlife enthusiasts who shared their photos and insights, including Hakim Benmokhtar, Toufik Lemoufek, Adel Bechkit, and Raouf Guechi. We are also thankful to all the local people, particularly Mr. Abbas and Mr. Aziz, who provided invaluable guidance in the field.

  1. Research ethics: This study was performed in accordance with the national laws of Algeria.

  2. Author contributions: KSO, MK and IW designed this study and performed statistical analysis; AD reviewed the manuscript; KSO, SF and KM collected data; NZB and MA supervised the study. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained upon reasonable request from the corresponding author.

References

Abisaid, M. and Dloniak, S.M.D. (2015). Hyaena hyaena. The IUCN Red List of Threatened Species 2015: e.T10274A45195080.Suche in Google Scholar

Abraham, A.J., Webster, A.B., Jordaan, J., Prys‐Jones, T.O., Ganswindt, A., De Jager, P., and Doughty, C.E. (2021). Hyaenas play unique ecosystem role by recycling key nutrients in bones. Afr. J. Ecol. 60: 81–86, https://doi.org/10.1111/aje.12907.Suche in Google Scholar

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., and Anderson, R.P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545, https://doi.org/10.1111/ecog.01132.Suche in Google Scholar

Akash, M., Dheer, A., Dloniak, S.M., and Jacobson, A.P. (2021). The faded stripes of Bengal: a historical perspective on the easternmost distribution of the striped hyena. Eur. J. Wildlife Res. 67(6): 1–12, https://doi.org/10.1007/s10344-021-01552-9.Suche in Google Scholar

Akay, A.E., Inac, S., and Yildirim, I.C. (2011). Monitoring the local distribution of striped hyenas (Hyaena hyaena L.) in the Eastern Mediterranean Region of Turkey (Hatay) by using GIS and remote sensing technologies. Environ. Monit. Assess. 181: 445–455, https://doi.org/10.1007/s10661-010-1840-6.Suche in Google Scholar PubMed

Alam, M.S. and Khan, J.A. (2015). Food habits of striped hyena (Hyaena hyaena) in a semi-arid conservation area of India. J. Arid Land 7: 860–866, https://doi.org/10.1007/s40333-015-0007-2.Suche in Google Scholar

Alam, M.S., Khan, J.A., Kushwaha, S.P.S., Agrawal, R., Pathak, B.J., and Sandeep, K. (2014). Assessment of suitable habitat of near threatened striped hyena (Hyaena hyaena Linnaeus, 1758) using remote sensing and geographic information system. Asian J. Geoinf. 14: 1–10.Suche in Google Scholar

Alam, M.S., Khan, J.A., and Pathak, B.J. (2009). Status ecology and conservation of striped hyena (Hyaena hyaena) in Gir National Park & Sanctuary. Project Technical Report, Wildlife Society of India, Aligarh, India.Suche in Google Scholar

Alam, M.S., Khan, J.A., and Pathak, B.J. (2015). Striped hyena (Hyaena hyaena) status and factors affecting its distribution in the Gir National Park and Sanctuary, India. Folia Zool 64: 32–39.10.25225/fozo.v64.i1.a4.2015Suche in Google Scholar

Al-Ghamdi, A.S. and Algadhi, S.A. (2004). Warning signs as countermeasures to camel–vehicle collisions in Saudi Arabia. Accid. Anal. Prev. 36: 749–760, https://doi.org/10.1016/j.aap.2003.05.006.Suche in Google Scholar PubMed

Almasieh, K., Mohammadi, A., and Alvandi, R. (2022). Identifying core habitats and corridors of a near threatened carnivore, striped hyaena (Hyaena hyaena) in southwestern Iran. Sci. Rep. 12: 3425, https://doi.org/10.1038/s41598-022-07386-y.Suche in Google Scholar PubMed PubMed Central

Anderson, R.P. and Gonzalez, Jr., I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222: 2796–2811, https://doi.org/10.1016/j.ecolmodel.2011.04.011.Suche in Google Scholar

Arumugam, R.A., Wagner, A.P., and Mills, M.G. (2008). Hyaena hyaena. In: IUCN Red List of Threatened Species, Version 2. IUCN.Suche in Google Scholar

Ashish, K., Ramesh, T., and Kalle, R. (2022). Striped hyaena den site selection in Nilgiri Biosphere Reserve, India. J. Trop. Ecol. 38: 472–479, https://doi.org/10.1017/s0266467422000396.Suche in Google Scholar

Attum, O., Rosenbarger, D., Al Awaji, M., Kramer, A., and Eid, E. (2017). Population size and artificial waterhole use by striped hyenas in the Dana Biosphere Reserve, Jordan. Mammalia 81: 1–5, https://doi.org/10.1515/mammalia-2015-0155.Suche in Google Scholar

Aulagnier, S., Bayed, A., Cuzin, F., and Thenevot, M. (2015). Mammals of Morocco: extinctions and declines during the XXth century. Trav. Inst. Sci. 8: 53–67.Suche in Google Scholar

Baker, P.J., Boitani, L., Harris, S., Saunders, G., and White, P.C.L. (2008). Terrestrial carnivores and human food production: impact and management. Mamm. Rev. 38: 123–166, https://doi.org/10.1111/j.1365-2907.2008.00122.x.Suche in Google Scholar

Barrientos, R. and De Dios Miranda, J. (2012). Can we explain regional abundance and road-kill patterns with variables derived from local-scale road-kill models? Evaluating transferability with the European polecat. Divers. Distrib. 18: 635–647, https://doi.org/10.1111/j.1472-4642.2011.00850.x.Suche in Google Scholar

Barthelmess, E.L. (2014). Spatial distribution of road-kills and factors influencing road mortality for mammals in Northern New York State. Biodivers. Conserv. 23: 2491–2514, https://doi.org/10.1007/s10531-014-0734-2.Suche in Google Scholar

Bar-Ziv, E., Picardi, S., Kaplan, A., Avgar, T., and Berger-Tal, O. (2022). Sex differences dictate the movement patterns of striped hyenas, Hyaena hyaena, in a human-dominated landscape. Front. Ecol. Evol. 10: 897132, https://doi.org/10.3389/fevo.2022.897132.Suche in Google Scholar

Benameur-Hasnaoui, H., Bounaceur, F., Ouabed, A., and Aulagnier, S. (2019). Présence relictuelle de l’hyène rayée Hyaena hyaena (Mammalia, Hyaenidae) dans l’extrême nord-ouest Algérien. Bull. Soc. Zool. France 141: 51–59.Suche in Google Scholar

Bhandari, S., Adhikari, B., Baral, K., Panthi, S., Kunwar, R.M., Thapamagar, T., Psaralexi, M., Bhusal, D.R., and Youlatos, D. (2022). Climate change threatens striped hyena (Hyaena hyaena) distribution in Nepal. Mammal Res. 67: 433–443, https://doi.org/10.1007/s13364-022-00638-2.Suche in Google Scholar

Bhandari, S., Bhusal, D.R., Psaralexi, M., and Sgardelis, S. (2021). Habitat preference indicators for striped hyena (Hyaena hyaena) in Nepal. Global Ecol. Conserv. 27: 1–11, https://doi.org/10.1016/j.gecco.2021.e01619.Suche in Google Scholar

Bhandari, S., Morley, C., Aryal, A., and Shrestha, U.B. (2020). The diet of the striped hyena in Nepal’s lowland regions. Ecol. Evol. 10: 7953–7962, https://doi.org/10.1002/ece3.6223.Suche in Google Scholar PubMed PubMed Central

Bhattacharya, M., Primack, R.B., and Gerwein, J. (2003). Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area. Biol. Conserv. 109: 37–45, https://doi.org/10.1016/s0006-3207(02)00130-1.Suche in Google Scholar

Boitet, E.R. and Mead, A.J. (2014). Application of GIS to a Baseline Survey of vertebrate roadkills in Baldwin County, Georgia. SE Nat. 13: 176–190, https://doi.org/10.1656/058.013.0117.Suche in Google Scholar

Boria, R.A., Olson, L.E., Goodman, S.M., and Anderson, R.P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275: 73–77, https://doi.org/10.1016/j.ecolmodel.2013.12.012.Suche in Google Scholar

Broekhuis, F., Cushman, S.A., and Elliot, N.B. (2017). Identification of human-carnivore conflict hotspots to prioritize mitigation efforts. Ecol. Evol. 7: 10630–10639, https://doi.org/10.1002/ece3.3565.Suche in Google Scholar PubMed PubMed Central

Bunaian, F., Hatoug, A., Ababaneh, D., Yousef, M., and Amr, Z.S. (2001). The carnivores of the northeastern Badia, Jordan. Turkish J. Zool. 25: 19–25.Suche in Google Scholar

Cain, A.T., Tuovila, V.R., Hewitt, D.G., and Tewes, M.E. (2003). Effects of a highway and mitigation projects on bobcats in Southern Texas. Biol. Conserv. 114: 189–197, https://doi.org/10.1016/s0006-3207(03)00023-5.Suche in Google Scholar

Castelló, J.R. (2020). Hyenas: hyenas and aardwolf. In: Felids and hyenas of the world: wildcats, panthers, lynx, pumas, ocelots, caracals, and relatives. Princeton University Press, New Jersey, pp. 475–514.10.2307/j.ctv11hprnkSuche in Google Scholar

Chapron, G., Kaczensky, P., Linnell, J.D., Von Arx, M., Huber, D., Andrén, H., Al, E., Adamec, M., Álvares, F., Anders, O., et al.. (2014). Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346: 1517–1519, https://doi.org/10.1126/science.1257553.Suche in Google Scholar PubMed

Clevenger, A.P. and Huijser, M.P. (2011). Wildlife crossing structure handbook: design and evaluation. North America, Washington D.C.Suche in Google Scholar

Clevenger, A.P. and Waltho, N. (2005). Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121: 453–464, https://doi.org/10.1016/j.biocon.2004.04.025.Suche in Google Scholar

Cobos, M.E., Peterson, A.T., Barve, N., and Osorio-Olvera, L. (2019a). kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J. 7: e6281, https://doi.org/10.7717/peerj.6281.Suche in Google Scholar PubMed PubMed Central

Cobos, M.E., Peterson, T.A., Osorio-Olvera, L., and Jiménez-García, D. (2019b). An exhaustive analysis of heuristic methods for variable selection in ecological niche re and species distribution modeling. Ecol. Inf. 53: 100983, https://doi.org/10.1016/j.ecoinf.2019.100983.Suche in Google Scholar

Coelho, I.P., Kindel, A., and Coelho, A.V.P. (2008). Roadkills of vertebrate species on two highways through the Atlantic Forest Biosphere Reserve, Southern Brazil. Eur. J. Wildlife Res. 54: 689–699, https://doi.org/10.1007/s10344-008-0197-4.Suche in Google Scholar

Colchero, F., Conde, D.A., Manterola, C., Chávez, C., Rivera, A., and Ceballos, G. (2011). Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim. Conserv. 14: 158–166, https://doi.org/10.1111/j.1469-1795.2010.00406.x.Suche in Google Scholar

Crooks, K.R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16: 488–502, https://doi.org/10.1046/j.1523-1739.2002.00386.x.Suche in Google Scholar

Cuyckens, G.a.E., Mochi, L.S., Vallejos, M., Perovic, P.G., and Biganzoli, F. (2016). Patterns and composition of road-killed wildlife in Northwest Argentina. Environ. Manag. 58: 810–820, https://doi.org/10.1007/s00267-016-0755-6.Suche in Google Scholar PubMed

Dadashi-Jourdehi, A., Shams-Esfandabad, B., Ahmadi, A., Rezaei, H.R., and Toranj-Zar, H. (2020). Predicting the potential distribution of striped hyena Hyaena hyaena in Iran. Belg. J. Zool. 150: 185–195, https://doi.org/10.26496/bjz.2020.80.Suche in Google Scholar

Davies, A.B., Marneweck, D.G., Druce, D.J., and Asner, G.P. (2016). Den site selection, pack composition, and reproductive success in endangered African wild dogs. Behav. Ecol. 27: 1869–1879.10.1093/beheco/arw124Suche in Google Scholar

Denneboom, D., Bar-Massada, A., and Shwartz, A. (2023). Wildlife mortality risk posed by high and low traffic roads. Conserv. Biol. 38(2): e14159, https://doi.org/10.1111/cobi.14159.Suche in Google Scholar PubMed

Derouiche, L., Bounaceur, F., Benamor, N., Hadjloum, M., Benameur-Hasnaoui, H., Ounas, H., Irzagh, A., Boualem, A., Belmoures, R., Djeghim, C., et al.. (2020). Distribution and status of the striped hyena Hyaena hyaena (Linnaeus, 1758) (Mammalia, Hyaenidae) in Algeria. Mammalia 84: 421–428, https://doi.org/10.1515/mammalia-2019-0085.Suche in Google Scholar

De Siqueira, M.F., Durigan, G., De Marco Júnior, P., and Peterson, A.T. (2009). Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17: 25–32, https://doi.org/10.1016/j.jnc.2008.11.001.Suche in Google Scholar

Dhiab, O. and Selmi, S. (2021). Patterns of vertebrate road-kills in a pre-Saharan Tunisian area. J. Arid Environ. 193: 104595, https://doi.org/10.1016/j.jaridenv.2021.104595.Suche in Google Scholar

Dickman, A.J. (2010). Complexities of conflict: the importance of considering social factors for effectively resolving human-wildlife conflict. Anim. Conserv. 13: 458–466, https://doi.org/10.1111/j.1469-1795.2010.00368.x.Suche in Google Scholar

Dodd, Jr., C.K., Barichivich, W.J., and Smith, L.L. (2004). Effectiveness of abarrier wall and culverts in reducing wildlife mortality on a heavily traveled highway in Florida. Biol. Conserv. 118: 619–631, https://doi.org/10.1016/j.biocon.2003.10.011.Suche in Google Scholar

Eriksson, T. and Dalerum, F. (2018). Identifying potential areas for an expanding wolf population in Sweden. Biol. Conserv. 220: 170–181, https://doi.org/10.1016/j.biocon.2018.02.019.Suche in Google Scholar

Fabrizio, M., Di Febbraro, M., D’amico, M., Frate, L., Roscioni, F., and Loy, A. (2019). Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: a case study on European badger (Meles meles). Eur. J. Wildlife Res. 65: 1–10, https://doi.org/10.1007/s10344-018-1241-7.Suche in Google Scholar

Ford, A.T. and Fahrig, L. (2007). Diet and body size of North American mammal road mortalities. Transport. Res. Part D: Transport Environ. 12: 498–505, https://doi.org/10.1016/j.trd.2007.07.002.Suche in Google Scholar

Gade, D.W. (2006). Hyenas and humans in the Horn of Africa. Geogr. Rev. 96: 609–632, https://doi.org/10.1111/j.1931-0846.2006.tb00519.x.Suche in Google Scholar

Gajera, N., Dave, S.M., and Nishith, D. (2009). Feeding pattern and den ecology of striped hyena. Tiger Pap. 36: 13–17.Suche in Google Scholar

Glista, D.J., Devault, T.L., and Dewoody, J.A. (2009). A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plann. 91: 1–7, https://doi.org/10.1016/j.landurbplan.2008.11.001.Suche in Google Scholar

Grilo, C., Bissonette, J.A., and Santos‐Reis, M. (2009). Spatial-temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol. Conserv. 142: 301–313, https://doi.org/10.1016/j.biocon.2008.10.026.Suche in Google Scholar

Grilo, C., Smith, D.J., and Klar, N. (2015). Carnivores: struggling for survival in roaded landscape. In: Handbook of road ecology. John Wiley & Sons, pp. 300–312.10.1002/9781118568170.ch35Suche in Google Scholar

Grilo, C., Sousa, J., Ascensão, F., Matos, H., Leitão, I., Pinheiro, P., Costa, M., Bernardo, J., Reto, D., Lourenço, R., et al.. (2012). Individual spatial responses towards roads: implications for mortality risk. PLoS One 7: e43811, https://doi.org/10.1371/journal.pone.0043811.Suche in Google Scholar PubMed PubMed Central

Guisan, A., Broennimann, O., Engler, R., Vus, T.M., Yoc Coz, N.G., Lehmann, A., and Zimmermann, N.E. (2006). Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20: 501–511, https://doi.org/10.1111/j.1523-1739.2006.00354.x.Suche in Google Scholar PubMed

Hadad, E., Kosicki, J.Z., and Yosef, R. (2023). Spatial modeling of road collisions of striped hyena (Hyaena hyaena) in Israel. Ecol. Res. 38(5): 664–675, https://doi.org/10.1111/1440-1703.12399.Suche in Google Scholar

Hannachi, A. and Fenni, M. (2013). Etude floristique et écologique des mauvaises herbes des cultures de la région de Batna (Algérie). Rev. Agric. 5: 24–36.Suche in Google Scholar

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climotol. 25: 1965–1978, https://doi.org/10.1002/joc.1276.Suche in Google Scholar

Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N. (2002). Ecological-niche factoranalysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027–2036, https://doi.org/10.2307/3071784.Suche in Google Scholar

International Steering Committee for Global Mapping, The National Institute of Cartography and Remote Sensing, Algeria (2009a). Roads, Algeria, 2009 [Shapefile], Retrieved from https://kurma-monitor-prod.stanford.edu/catalog/stanford-jt633ws7609.Suche in Google Scholar

International Steering Committee for Global Mapping, The National Institute of Cartography and Remote Sensing, Algeria (2009b). Rivers, Algeria, 2009, [Shapefile]. Available at https://kurma-monitor-prod.stanford.edu/catalog/stanford-wk281mf6791.Suche in Google Scholar

International Steering Committee for Global Mapping (ISCGM). (2004). Algeria Inland Waters, 2004 [Shapefile]. Available at https://kurma-monitor-prod.stanford.edu/catalog/sde-columbia-iscgm_algeria_2004_water.Suche in Google Scholar

Jackson, C.R., Power, R.J., Groom, R.J., Masenga, E.H., Mjingo, E.E., Fyumagwa, R.D., Roskaft, E., and Davies-Mostert, H. (2014). Heading for the hills: risk avoidance drives den site selection in African wild dogs. PLoS One 9: e99686, https://doi.org/10.1371/journal.pone.0099686.Suche in Google Scholar PubMed PubMed Central

Jackson, N.D. and Fahrig, L. (2011). Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 144: 3143–3148, https://doi.org/10.1016/j.biocon.2011.09.010.Suche in Google Scholar

Jackson, S.D. and Griffin, C.R. (2000) A strategy for mitigating highway impacts on wildlife. In: Messmer, T.A., and West, B. (Eds.). Wildlife and highways: seeking solutions to an ecological and socio-economic dilemma. The Wildlife Society, Bethesda, MD.Suche in Google Scholar

Jaeger, J.a.G. and Fahrig, L. (2004). Effects of road fencing on population persistence. Conserv. Biol. 18: 1651–1657, https://doi.org/10.1111/j.1523-1739.2004.00304.x.Suche in Google Scholar

Kaboodvandpour, S., Almasieh, K., and Zamani, N. (2021). Habitat suitability and connectivity implications for the conservation of the Persian leopard along the Iran–Irak border. Ecol. Evol. 11: 13464–13474, https://doi.org/10.1002/ece3.8069.Suche in Google Scholar PubMed PubMed Central

Kannan, P., Salaria, S., Khan, S., Mark, T., Baberwal, N., Bhatnagar, A., Shethia, Y., Thatte, P., and Chanchani, P. (2022). Assessing carnivore occurrence and community attitudes towards wildlife in a multi-use arid landscape corridor. Front. Conserv. Sci. 2, https://doi.org/10.3389/fcosc.2021.787431.Suche in Google Scholar

Kasparek, M., Kasparek, A., Gözcelioğlu, B., Çolak, E., and Yiğit, N. (2004). On the status and distribution of the striped Hyaena, Hyaena hyaena, in Turkey. Zool. Middle East 33: 93–108, https://doi.org/10.1080/09397140.2004.10638068.Suche in Google Scholar

Kingdon, J.S. (2003). The Kingdon field guide to African mammals. Christopher Helm Publishers, London.Suche in Google Scholar

Klar, N., Herrmann, M., and Kramer‐Schadt, S. (2009). Effects and mitigation of road impacts on individual movement behavior of wildcats. J. Wildlife Manag. 73: 631–638, https://doi.org/10.2193/2007-574.Suche in Google Scholar

Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C., et al.. (2008). Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222–226, https://doi.org/10.1126/science.1155193.Suche in Google Scholar PubMed

Kuhn, B. (2005). The faunal assemblages and taphonomic signatures of five striped Hyaena (Hyaena hyaena syriaca) dens in the desert of eastern Jordan. Levant 37: 221–234, https://doi.org/10.1179/lev.2005.37.1.221.Suche in Google Scholar

Kumar, S. and Stohlgren, T.J. (2009). MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 1: 94–98.Suche in Google Scholar

Kushwaha, S.P.S. (2002) Published. Geoinformatics for wildlife habitat characterization. In Proceedings of Map India. 5th Annual International Conference, New Delhi.Suche in Google Scholar

Lala, F., Chiyo, P.I., Kanga, E., Omondi, P., Ngene, S., Severud, W.J., Morris, A.W., and Bump, J. (2021). Wildlife roadkill in the Tsavo ecosystem, Kenya: identifying hotspots, potential drivers, and affected species. Heliyon 7: e06364, https://doi.org/10.1016/j.heliyon.2021.e06364.Suche in Google Scholar PubMed PubMed Central

Laurance, W.F., Clements, G.R., Sloan, S., O’connell, C.S., Mueller, N.D., Goosem, M., Venter, O., Edwards, D.P., Phalan, B., Balmford, A., et al.. (2014). A global strategy for road building. Nature 513: 229–232, https://doi.org/10.1038/nature13717.Suche in Google Scholar PubMed

Lecis, R. and Norris, K. (2003). Habitat correlates of distribution and local population decline of the endemic Sardinian new Euproctus platycephalus. Biol. Conserv. 115: 303–317, https://doi.org/10.1016/s0006-3207(03)00149-6.Suche in Google Scholar

Liu, J., Fitzgerald, M., Liao, H., Luo, Y., Jin, T., Li, X., Yang, X., Hirata, S., and Matsuzawa, T. (2019). Modeling habitat suitability for Yunnan Snub-nosed monkeys in Laojun Mountain National Park. Primates 61: 277–287, https://doi.org/10.1007/s10329-019-00767-4.Suche in Google Scholar PubMed

Longcore, T. and Catherine, R. (2016). Artificial night lighting and protected lands: ecological effects and management approaches. Natural Resource Report NPS/NRSS/NSNS/NRR—2016/1213. Fort Collins, Colorado.Suche in Google Scholar

Malo, J.E., Suárez, F., and Díez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? J. Appl. Ecol. 41: 701–710, https://doi.org/10.1111/j.0021-8901.2004.00929.x.Suche in Google Scholar

Mandal, D., Chatterjee, D., Qureshi, Q., and Sankar, K. (2018). Behavioural observations on interaction of leopard and striped hyena, Western India. CAT News 67: 20–21.Suche in Google Scholar

Mech, L.D. and Boitoni, L. (2003). Wolf social ecology. Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago, IL.10.7208/chicago/9780226516981.001.0001Suche in Google Scholar

Mohammadi, A., Almasieh, K., Clevenger, A.P., Fatemizadeh, F., Rezaei, A., Jowkar, H., and Kaboli, M. (2018). Road expansion: a challenge to conservation of mammals, with particular emphasis on the endangered Asiatic cheetah in Iran. J. Nat. Conserv. 43: 8–18, https://doi.org/10.1016/j.jnc.2018.02.011.Suche in Google Scholar

Mohammadi, A., Almasieh, K., Nayeri, D., Adibi, M.A., and Wan, H.Y. (2022). Comparison of habitat suitability and connectivity modelling for three carnivores of conservation concern in an Iranian montane landscape. Landsc. Ecol. 37: 411–430, https://doi.org/10.1007/s10980-021-01386-5.Suche in Google Scholar

Mohammadi, A. and Kaboli, M. (2016). Evaluating wildlife–vehicle collision hotspots using kernel-based estimation: a focus on the endangered Asiatic cheetah in central Iran. Human-Wild. Interact. 10: 103–109.Suche in Google Scholar

Monchot, H. and Mashkour, M. (2010). Hyenas around the city (Kashan, Iran). J. Taphonomy 8: 17–32.Suche in Google Scholar

Mondal, K., Sankar, K., and Qureshi, Q. (2012). Factors influencing the distribution of leopard in a semiarid landscape of Western India. Acta Theriol. 58: 179–187, https://doi.org/10.1007/s13364-012-0109-6.Suche in Google Scholar

Mortelliti, A. and Boitani, L. (2008). Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landsc. Ecol. 23: 285–298, https://doi.org/10.1007/s10980-007-9182-7.Suche in Google Scholar

Mukherjee, T., Chongder, I., Ghosh, S., Dutta, A., Singh, A., Dutta, R., Joshi, B.D., Thakur, M., Sharma, L.K., Venkatraman, C., et al.. (2021). Indian Grey Wolf and Striped Hyaena sharing from the same bowl: high niche overlap between top predators in a human-dominated landscape. Global Ecol. Conserv. 28: e01682, https://doi.org/10.1016/j.gecco.2021.e01682.Suche in Google Scholar

O’brien, R.C., Larcombe, A., Meyer, J., Forbes, S.L., and Dadour, I. (2010). The scavenging behaviour of the Australian Raven (Corvus coronoides): patterns and influencing factors. Sylvia 46, 133–148.Suche in Google Scholar

Panda, D., Mohanty, S., Suryan, T., Pandey, P., Lee, H., and Singh, R. (2022). High striped hyena density suggests coexistence with humans in an agricultural landscape, Rajasthan. PLoS One 17: e0266832, https://doi.org/10.1371/journal.pone.0266832.Suche in Google Scholar PubMed PubMed Central

Panda, D., Sharma, S., Mohanty, S., Kumar, A., Suryan, T., Shukla, M., Pandey, P., Lee, H., and Singh, R. (2023). Dietary preference of striped hyena in the anthropogenic landscape of Rajasthan, India. Acta Ecol. Sinica 43: 1067–1073, https://doi.org/10.1016/j.chnaes.2023.03.002.Suche in Google Scholar

Peach, D.a.H., Almond, M., and Pol, J.C. (2019). Modeled distributions of Aedes japonicus japonicus and Aedes togoi (Diptera: Culicidae) in the United States, Canada, and Northern Latin America. J. Vector Ecol. 44: 119–129, https://doi.org/10.1111/jvec.12336.Suche in Google Scholar PubMed

Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102–117, https://doi.org/10.1111/j.1365-2699.2006.01594.x.Suche in Google Scholar

Peterson, A.T., Papeş, M., and Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213: 63–72, https://doi.org/10.1016/j.ecolmodel.2007.11.008.Suche in Google Scholar

Peterson, A.T., Sánchez-Cordero, V., Soberón, J., Bartley, J., Buddemeier, R.H., and Navarro-Sigüenza, A.G. (2001). Effects of global climate change on geographic distributions of Mexican Cracidae. Ecol. Model. 144: 21–30, https://doi.org/10.1016/s0304-3800(01)00345-3.Suche in Google Scholar

Phillips, S.J., Anderson, R.P., and Schapire, R. (2006). Maximum entropy modelling of species geographic distributions. Ecol. Model. 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.Suche in Google Scholar

Qarqaz, M.A., Abu Baker, M.A., and Amr, Z.S. (2004). Status and ecology of the striped hyaena, Hyaena hyaena, in Jordan. Zool. Middle East 33: 87–92, https://doi.org/10.1080/09397140.2004.10638067.Suche in Google Scholar

Rabinowitz, A. and Zeller, K.A. (2010). A range-wide model of landscape connectivity and conservation for the Jaguar, Panthera onca. Biol. Conserv. 143: 939–945, https://doi.org/10.1016/j.biocon.2010.01.002.Suche in Google Scholar

Ramp, D., Caldwell, J., Edwards, K.A., Warton, D., and Croft, D.B. (2005). Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biol. Conserv. 126: 474–490, https://doi.org/10.1016/j.biocon.2005.07.001.Suche in Google Scholar

Ray, J.C., Hunter, L., and Zigouris, J. (2005). Setting conservation and research priorities for larger African carnivores. Wildlife Conservation Society, New York.Suche in Google Scholar

Rezaei, S., Mohammadi, A., Malakoutikhah, S., and Khosravi, R. (2022). Combining multiscale niche modeling, landscape connectivity, and gap analysis to prioritize habitats for conservation of striped hyaena (Hyaena hyaena). PLoS One 17: e0260807, https://doi.org/10.1371/journal.pone.0260807.Suche in Google Scholar PubMed PubMed Central

Rezaei, S., Naderi, S., and Karami, P. (2017). The ecological state study of the striped hyena (Hyaena hyaena) denning regions in Haftadgholeh protected area using maximum entropy method. J. Nat. Environ. (Iran. J. Nat. Ressour.) 70: 351–362.Suche in Google Scholar

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., et al.. (2014). Status and ecological effects of the world’s largest carnivores. Science 343: 1241484, https://doi.org/10.1126/science.1241484.Suche in Google Scholar PubMed

Roger, E., Bino, G., and Ramp, D. (2012). Linking habitat suitability and road mortalities across geographic ranges. Landsc. Ecol. 27: 1167–1181, https://doi.org/10.1007/s10980-012-9769-5.Suche in Google Scholar

Rytwinski, T. and Fahrig, L. (2010). Reproductive rate and body size predict road impacts on mammal abundance. Ecol. Appl. 21: 589–600, https://doi.org/10.1890/10-0968.1.Suche in Google Scholar PubMed

Schroder, B. and Richter, O. (2000). Are habitat models transferable in space and time? J. Nat. Conserv. 8: 195–205.Suche in Google Scholar

Schwartz, A.L.W., Shilling, F.M., and Perkins, S.E. (2020). The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 66: 1–12, https://doi.org/10.1007/s10344-019-1357-4.Suche in Google Scholar

Schwartz, A.L.W., Williams, H.F., Chadwick, E., Thomas, R.J., and Perkins, S.E. (2018). Roadkill scavenging behaviour in an urban environment. J. Urban Ecol. 4: 1–7, https://doi.org/10.1093/jue/juy006.Suche in Google Scholar

Shcheglovitova, M. and Anderson, R.P. (2013). Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Model. 269: 9–17, https://doi.org/10.1016/j.ecolmodel.2013.08.011.Suche in Google Scholar

Singh, P. (2008). Population density and feeding ecology of the striped hyena (Hyaena hyaena) in relation to land use patterns in an arid region of Rajasthan. Master of Science in Wildlife Biology and Conservation, Manipal University.Suche in Google Scholar

Singh, P., Gopalaswamy, A.M., and Karanth, K.U. (2010). Factors influencing densities of striped hyenas (Hyaena hyaena) in arid regions of India. J. Mammal. 91: 1152–1159, https://doi.org/10.1644/09-mamm-a-159.1.Suche in Google Scholar

Singh, R., Qureshi, Q., Sankar, K., Krausman, P.R., Goyal, S.P., and Nicholson, K.L. (2014). Population density of striped hyenas in relation to habitat in a semi-arid landscape, Western India. Acta Theriol. 59: 521–527, https://doi.org/10.1007/s13364-014-0187-8.Suche in Google Scholar

Snow, N.P., Williams, D.M., and Porter, W.F. (2014). A landscape-based approach for delineating hotspots of wildlife–vehicle collisions. Landsc. Ecol. 29: 817–829, https://doi.org/10.1007/s10980-014-0018-y.Suche in Google Scholar

Sun, Y., Wang, Y., Yuan, K., Chan, T.O., and Huang, Y. (2020). Discovering spatio-temporal clusters of road collisions using the method of fast Bayesian model-based cluster detection. Sustainability 12: 1–15, https://doi.org/10.3390/su12208681.Suche in Google Scholar

Swanepoel, L.H., Lindsey, P., Somers, M.J., Van Hoven, W., Dalerum, F., Pettorelli, N., and Penteriani, V. (2012). Extent and fragmentation of suitable leopard habitat in South Africa. Anim. Conserv. 16: 41–50, https://doi.org/10.1111/j.1469-1795.2012.00566.x.Suche in Google Scholar

Switalski, T.A. and Nelson, C.R. (2011). Efficacy of road removal for restoring wildlife habitat: black bear in the Northern Rocky Mountains, USA. Biol. Conserv. 144: 2666–2673, https://doi.org/10.1016/j.biocon.2011.07.026.Suche in Google Scholar

Team, R.D.C. (2021). R: a language and environmental for statistical computing, 3.6.1 ed. R Foundation for Statistical Computing, Vienna, Austria.Suche in Google Scholar

Thomaes, A., Kervyn, T., and Maes, D. (2008). Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biol. Conserv. 141: 1400–1410, https://doi.org/10.1016/j.biocon.2008.03.018.Suche in Google Scholar

Tourani, M., Moqanaki, E.M., and Kiabi, B.H. (2012). Vulnerability of striped hyaenas, Hyaena hyaena, in a human-dominated landscape of Central Iran. Zool. Middle East 56: 134–138, https://doi.org/10.1080/09397140.2012.10648948.Suche in Google Scholar

Tryjanowski, P., Beim, M., Kubicka, A.M., Morelli, F., Sparks, T.H., and Sklenicka, P. (2021). On the origin of species on road warning signs: a global perspective. Global Ecol. Conserv. 27: e01600, https://doi.org/10.1016/j.gecco.2021.e01600.Suche in Google Scholar

Van Der Ree, R., Smith, D.J., Grilo, C., VanderRee, R., Smith, D.J., et al. (2015). Chapter 1: The ecological effects of linear infrastructure and traffic: challenges and opportunities of rapid global growth. John Wiley & Sons, New Jersey.10.1002/9781118568170.ch1Suche in Google Scholar

Van Langevelde, F. and Jaarsma, C.F. (2004). Using traffic flow theory to model traffic mortality in mammals. Landsc. Ecol. 19: 895–907, https://doi.org/10.1007/s10980-005-0464-7.Suche in Google Scholar

Wagner, A. P. (2006). Behavioral Ecologyof the striped Hyena (Hyaena hyaena). PhD thesis, Montana State UniversitySuche in Google Scholar

Wagner, A.P., Creel, S., and Kalinowski, S.T. (2006). Estimating relatedness and relationships using microsatellite loci with null alleles. Heredity (Edinb) 97: 336–345, https://doi.org/10.1038/sj.hdy.6800865.Suche in Google Scholar PubMed

Warren, D.L., Glor, R.E., and Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611, https://doi.org/10.1111/j.1600-0587.2009.06142.x.Suche in Google Scholar

Warren, D. L. and Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. App. 21: 335–342.10.1890/10-1171.1Suche in Google Scholar PubMed

Warren, D.L., Wright, A.N., Seifert, S.N., and Shaffer, B.H. (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20: 334–343, https://doi.org/10.1111/ddi.12160.Suche in Google Scholar

Weng, L., Boedhihartono, A.K., Dirks, P.H.G.M., Dixon, J., Lubis, M.I., and Sayer, J.A. (2013). Mineral industries, growth corridors and agricultural development in Africa. Global Food Secur. 2: 195–202, https://doi.org/10.1016/j.gfs.2013.07.003.Suche in Google Scholar

Wolf, C. and Ripple, W.J. (2017). Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4: 170052, https://doi.org/10.1098/rsos.170052.Suche in Google Scholar PubMed PubMed Central

Yovel, Y. and Ulanvosky, N. (2017) Bat navigation. In: Byrne, J.H. (Ed.). Learning and memory: a comprehensive reference, 2nd ed. Academic Press, Cambridge, MA, USA.10.1016/B978-0-12-809324-5.21031-6Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/mammalia-2022-0095).


Received: 2022-08-11
Accepted: 2024-04-16
Published Online: 2024-05-10
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Ecology
  3. Occurrence and temporal activity pattern of Burmese Red Serow (Capricornis rubidus, Bovidae) in Baraiyadhala National Park, Bangladesh: insights from a camera trapping study
  4. Understanding habitat suitability and road mortality for the conservation of the striped hyaena (Hyaena hyaena) in Batna (East Algeria)
  5. Striped hyena Hyaena hyaena (Linnaeus 1758): feeding ecology based on den prey remains in a pastoralist landscape, southern Kenya
  6. Harpy eagle kill sample provides insights into the mandibular ontogenetic patterns of two-toed sloths (Xenarthra: Choloepus)
  7. Drivers of Indian pangolin (Manis crassicaudata) mortality in Central and Western Pakistan
  8. Food habits of invasive masked palm civets (Paguma larvata) in northern Japan
  9. First predation event of an anuran by Holochilus chacarius in the Pantanal wetland, central portion of South America
  10. Potential seed dispersal of cumbaru (Dipteryx alata) by fruit-eating bats (Artibeus sp.) in a Brazilian urban context
  11. Biogeography
  12. New and unusual records of Glironia venusta (Didelphimorphia, Didelphidae) in Brazil
  13. Bats (Mammalia: Chiroptera) from two priority areas for biodiversity conservation in the Brazilian Amazon and range extension for Carollia benkeithi (Phyllostomidae)
  14. A multidisciplinary approach unveils the distribution of the Alpine long-eared bat Plecotus macrobullaris (Vespertilionidae) in Italy
  15. First record of Great Himalayan leaf-nosed bat, Hipposideros armiger (Hipposideridae) from Bangladesh
  16. Ethology
  17. Insights into marking behavior of giant anteaters: a camera trap study in the Rupununi savannahs, Guyana
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2022-0095/html
Button zum nach oben scrollen