Startseite Trophic niche overlap among Neotropical carnivores in a silvicultural landscape
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Trophic niche overlap among Neotropical carnivores in a silvicultural landscape

  • Ana Beatriz de Almeida ORCID logo EMAIL logo , Marcelo Magioli ORCID logo , Carla Gheler-Costa ORCID logo , Luciano Martins Verdade ORCID logo , Thiago Simon Marques ORCID logo , Letícia de Cássia Gilli de Lima und Thomas Püttker ORCID logo
Veröffentlicht/Copyright: 23. März 2023
Mammalia
Aus der Zeitschrift Mammalia Band 87 Heft 4

Abstract

To enable long-term coexistence, species need to differentiate at least one of the three main dimensions of the ecological niche (temporal, spatial, or trophic dimension). Here, we investigated whether mammalian predators (Chrysocyon brachyurus, Cerdocyon thous, Lycalopex vetulus, and Puma concolor) follow the prediction of trophic niche partitioning, which is expected when partitioning of food resources represents an important mechanism for coexistence. We predicted low niche overlap in general and low between P. concolor and the other species. We analyzed 207 fecal samples collected at a landscape composed of forest remnants immersed in Eucalyptus plantations. Food items (animals and plants) were identified using exoskeletons, feathers, scales, teeth, hair, and seeds. We calculated the frequency and percentage of occurrence of food items, niche breadth, and niche overlap between pairs of species. Prey size was similar among all predators, consuming mainly small-sized prey (<1 kg). However, niche breadth was larger for smaller carnivores compared to larger ones. No species pair showed significantly lower niche overlap than expected by chance. Our study provided detailed information on trophic resource use of sympatric carnivores, showing that trophic niche partitioning seems not to be crucial for the coexistence of carnivores in the study area.


Corresponding author: Ana Beatriz de Almeida, Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Diadema, SP 05508-900, Brazil; and Programa de Pós-Graduação Interunidades em Ecologia Aplicada, Escola Superior de Agricultura, Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil, E-mail:

Funding source: Fundação de Amparo à Pesquisa do Estado de São Paulo

Award Identifier / Grant number: 2017/01304-4 coordinated by Luciano M. Verdade

Funding source: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Award Identifier / Grant number: 88882.430854/2019-01

Acknowledgments

We would like to thank Prof. Dr. Alexandre Percequillo and Prof. Vilma Almeida for helping to identify species of mammals and plants, respectively. We are grateful to Fernanda D. Abra (ViaFAUNA: “http://www.viafauna.com.br/”) who kindly provided the Chrysocyon brachyurus, Lycalopex vetulus, and Puma concolor drawings used in Figure 3.

  1. Author contributions: All authors contributed to the study. Conceptualization: Ana Beatriz de Almeida, Carla Gheler-Costa, Luciano Martins Verdade, Thiago Simon Marques, and Thomas Püttker; Data collection: Ana Beatriz de Almeida, Luciano Martins Verdade, Carla Gheler-Costa and Letícia de Cássia Gilli de Lima. Methodology (analysis): Ana Beatriz de Almeida, Thomas Püttker, and Marcelo Magioli. Writing – original draft preparation: Ana Beatriz de Almeida. Writing – review and editing: Ana Beatriz de Almeida, Carla Gheler-Costa, Luciano Martins Verdade, Thiago Simon Marques, and Thomas Püttker. Funding acquisition: Ana Beatriz de Almeida and Luciano Martins Verdade. Supervision: Thomas Püttker. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

  2. Research funding: We are grateful for financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) project nº 2017/01304-4 coordinated by Luciano M. Verdade, for costs of field collections and equipment (microscope and magnifying glass).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Research ethics: Ethical approval is not applicable.

References

Abreu, M.S.L., Christoff, A.U., and Vieira, E.M. (2011). Identification of marsupials from southern Brazil using microstructure of guard-hairs. Biota Neotropica 11: 391–400, https://doi.org/10.1590/s1676-06032011000300031.Suche in Google Scholar

Abreu, E.F., Casali, D., Costa-Araújo, R., Garbino, G.S.T., Libardi, G.S., Loretto, D., Loss, A.C., Marmontel, M., Moras, L.M., Nascimento, M.C., et al.. (2021). Lista de Mamíferos do Brasil (2021-2) [Data set]. Zenodo, Brazil.Suche in Google Scholar

Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6: 1109–1122, https://doi.org/10.1046/j.1461-0248.2003.00530.x.Suche in Google Scholar

Azevedo, F.C., Lemos, F.G., Freitas‐Junior, M.C., Rocha, D.G., and Azevedo, F.C.C. (2018). Puma activity patterns and temporal overlap with prey in a human‐modified landscape at Southeastern Brazil. J. Zool. 305: 246–255, https://doi.org/10.1111/jzo.12558.Suche in Google Scholar

Banks-Leite, C., Pardini, R., Tambosi, L.R., Pearse, W.D., Bueno, A.A., Bruscagin, R.T., Condez, T.H., Dixo, M., Igari, A.T., Martensen, A.C., et al.. (2014). Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science, 345, 1041-1045, https://doi.org/10.1126/science.1255768.Suche in Google Scholar PubMed

Barrull, J., Mate, I., Ruiz-Olmo, J., Casanovas, J.G., Gosàlbez, J., and Salicrú, M. (2014). Factors and mechanisms that explain coexistence in a Mediterranean carnivore assemblage: an integrated study based on camera trapping and diet. Mamm. Biol. 79: 123–131, https://doi.org/10.1016/j.mambio.2013.11.004.Suche in Google Scholar

Begnini, R.M., da Silva, F.R., and Castellani, T.T. (2013). Fenologia reprodutiva de Syagrus romanzoffiana (Cham.) glassman (Arecaceae) em Floresta Atlântica no sul do Brasil. Biotemas 26: 53–60.10.5007/2175-7925.2013v26n4p53Suche in Google Scholar

Bianchi, R.D.C., Olifiers, N., Gompper, M.E., and Mourao, G. (2016). Niche partitioning among mesocarnivores in a Brazilian wetland. PLoS One 11: e0162893, https://doi.org/10.1371/journal.pone.0162893.Suche in Google Scholar PubMed PubMed Central

Bogoni, J.A., Pires, J.S.R., Graipel, M.E., Peroni, N., and Peres, C.A. (2018). Wish you were here: how defaunated is the Atlantic Forest biome of its medium-to large-bodied mammal fauna? PLoS One 13: e0204515, https://doi.org/10.1371/journal.pone.0204515.Suche in Google Scholar PubMed PubMed Central

Bueno, A.D.A. and Motta-Junior, J.C. (2004). Food habits of two syntopic canids, the maned wolf (Chrysocyon brachyurus) and the crab-eating fox (Cerdocyon thous), in southeastern Brazil. Rev. Chil. Hist. Nat. 77: 5–14.10.4067/S0716-078X2004000100002Suche in Google Scholar

Bueno, A.D. and Motta-Junior, J.C. (2009). Feeding habits of the maned wolf, Chrysocyon brachyurus (Carnivora: Canidae), in southeast Brazil. Stud. Neotrop. Fauna Environ. 44: 67–75, https://doi.org/10.1080/01650520902891413.Suche in Google Scholar

Di Bitetti, M.S., De Angelo, C.D., Di Blanco, Y.E., and Paviolo, A. (2010). Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36: 403–412, https://doi.org/10.1016/j.actao.2010.04.001.Suche in Google Scholar

Campos, B.M., Charters, J.D., and Verdade, L.M. (2018). Diversity and distribution patterns of medium to large mammals in a silvicultural landscape in south-eastern Brazil. iFor. Biogeosci. For. 11: 802–808, https://doi.org/10.3832/ifor2721-011.Suche in Google Scholar

Campos, C.B., Esteves, C.F., Ferraz, K., Crawshaw, P.G., and Verdade, L.M. (2007). Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. J. Zool. 273: 14–20, https://doi.org/10.1111/j.1469-7998.2007.00291.x.Suche in Google Scholar

Carbone, C. and Gittleman, J.L. (2002). A common rule for the scaling of carnivore density. Science 295: 2273–2276, https://doi.org/10.1126/science.1067994.Suche in Google Scholar PubMed

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Systemat. 31: 343–366, https://doi.org/10.1146/annurev.ecolsys.31.1.343.Suche in Google Scholar

Colman, N.J., Crowther, M.S., and Letnic, M. (2015). Macroecological patterns in mammal abundances provide evidence that an apex predator shapes forest ecosystems by suppressing herbivore and mesopredator abundance. J. Biogeogr. 42: 1975–1985, https://doi.org/10.1111/jbi.12563.Suche in Google Scholar

Correa, C.E., Albrecht, M.P., and Hahn, N.S. (2011). Patterns of niche breadth and feeding overlap of the fish fauna in the seasonal Brazilian Pantanal, Cuiaba River basin. Neotrop. Ichthyol. 9: 637–646, https://doi.org/10.1590/s1679-62252011000300017.Suche in Google Scholar

Crawshaw, P.G.Jr and Quigley, H.B. (2002). Hábitos alimentarios del jaguar y el puma en el Pantanal, Brasil, con implicaciones para su manejo y conservación. El jaguar en el nuevo milenio. México Fondo de Cultura Económica, UNAM, WCS, pp. 223–236.Suche in Google Scholar

Cruz, L.R., Muylaert, R.L., Galetti, M., and Pires, M.M. (2022). The geography of diet variation in Neotropical Carnivora. Mamm Rev. 52: 112–128, https://doi.org/10.1111/mam.12266.Suche in Google Scholar

Davis, M.L., Kelly, M.J. and Stauffer, D.F. (2011). Carnivore co-existence and habitat use in the mountain pine ridge forest reserve, Belize. Anim. Conserv. 14: 56–65, https://doi.org/10.1111/j.1469-1795.2010.00389.x.Suche in Google Scholar

De Angelo, C., Paviolo, A., and Di Bitetti, M. (2011). Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Parana Atlantic Forest. Divers. Distrib. 17: 422–436, https://doi.org/10.1111/j.1472-4642.2011.00746.x.Suche in Google Scholar

De Melo, L.F.B., Sabato, M.A.L., Magni, E.M.V., Young, R.J., and Coelho, C.M. (2007). Secret lives of maned wolves (Chrysocyon brachyurus Illiger 1815): as revealed by GPS tracking collars. J. Zool. 271: 27–36, https://doi.org/10.1111/j.1469-7998.2006.00176.x.Suche in Google Scholar

De Moura, T.M., Oliveira, G.C.X., and Chaves, L.J. (2010). Correlation between flowering, frutification and environmental variables in Solanum lycocarpum A. St.-Hil, Solanaceae. Biosci. J. 26: 457–462.Suche in Google Scholar

Dias, D.D. and Bocchiglieri, A. (2016). Trophic and spatio-temporal niche of the crab-eating fox, Cerdocyon thous (Linnaeus, 1766) (Carnivora: Canidae), in a remnant of the Caatinga in northeastern Brazil. Mammalia 80: 281–291.10.1515/mammalia-2014-0108Suche in Google Scholar

Dotta, G. and Verdade, L.M. (2007). Trophic categories in a mammal assemblage: diversity in an agricultural landscape. Biota Neotropica 7: 287–292.10.1590/S1676-06032007000200031Suche in Google Scholar

Dotta, G. and Verdade, L.M. (2011). Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 75: 345–352, https://doi.org/10.1515/mamm.2011.049.Suche in Google Scholar

Faria-Corrêa, M., Balbueno, R.A., Vieira, E.M., and de Freitas, T.R. (2009). Activity, habitat use, density, and reproductive biology of the crab-eating fox (Cerdocyon thous) and comparison with the pampas fox (Lycalopex gymnocercus) in a Restinga area in the southern Brazilian Atlantic Forest. Mamm. Biol. 74: 220–229, https://doi.org/10.1016/j.mambio.2008.12.005.Suche in Google Scholar

Ferraz, K., de Siqueira, M.F., Martin, P.S., Esteves, C.F., and do Couto, H.T.Z. (2010). Assessment of Cerdocyon thous distribution in an agricultural mosaic, southeastern Brazil. Mammalia 74: 275–280, https://doi.org/10.1515/mamm.2010.036.Suche in Google Scholar

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., et al.. (2005). Global consequences of land use. Science 309: 570–574, https://doi.org/10.1126/science.1111772.Suche in Google Scholar PubMed

Gheler-Costa, C., Vettorazzi, C.A., Pardini, R., and Verdade, L.M. (2012). The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76: 185–191, https://doi.org/10.1515/mammalia-2011-0109.Suche in Google Scholar

Gheler-Costa, C., Botero, G.P., Reia, L., de Cassia Gilli, L., Comin, F.H., and Verdade, L.M. (2018). Ecologia trófica de onça-parda (Puma concolor) em paisagem agrícola. Revista em Agronegócio e Meio Ambiente 11: 203–225, https://doi.org/10.17765/2176-9168.2018v11n1p203-225.Suche in Google Scholar

Gibbs, H.K., Ruesch, A.S., Achard, F., Clayton, M.K., Holmgren, P., Ramankutty, N., and Foley, J.A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. U. S. A 107: 16732–16737, https://doi.org/10.1073/pnas.0910275107.Suche in Google Scholar PubMed PubMed Central

Giordano, C., Lyra-Jorge, M.C., Miotto, R.A. and Pivello, V.R. (2018). Food habits of three carnivores in a mosaic landscape of Sao Paulo state, Brazil. Eur. J. Wildl. Res. 64: 5, https://doi.org/10.1007/s10344-018-1172-3.Suche in Google Scholar

Gotelli, N.J., Hart, E.M., and Ellison, A.M. (2015). EcoSimR: null model analysis for ecological data. R package version 0.1.0. Available at: <http://github.com/gotellilab/EcoSimR>.Suche in Google Scholar

Grecchi, R.C., Gwyn, Q.H.J., Benie, G.B., Formaggio, A.R., and Fahl, F.C. (2014). Land use and land cover changes in the Brazilian Cerrado: a multidisciplinary approach to assess the impacts of agricultural expansion. Appl. Geogr. 55: 300–312, https://doi.org/10.1016/j.apgeog.2014.09.014.Suche in Google Scholar

Hunter, J. and Caro, T. (2008). Interspecific competition and predation in American carnivore families. Ethol. Ecol. Evol. 20: 295–324, https://doi.org/10.1080/08927014.2008.9522514.Suche in Google Scholar

Hurlbert, S.H. (1978). The measurement of niche overlap and some relatives. Ecology 59: 67–77, https://doi.org/10.2307/1936632.Suche in Google Scholar

Jacomo, A., Silveira, L., and Diniz, J.A.F. (2004). Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon thous) and the hoary fox (Dusicyon vetulus) in central Brazil. J. Zool. 262: 99–106, https://doi.org/10.1017/s0952836903004473.Suche in Google Scholar

Juarez, K.M. and Marinho, J. (2002). Diet, habitat use, and home ranges of sympatric canids in central Brazil. J. Mammal. 83: 925–933, https://doi.org/10.1644/1545-1542(2002)083<0925:dhuahr>2.0.co;2.10.1644/1545-1542(2002)083<0925:DHUAHR>2.0.CO;2Suche in Google Scholar

Kauffman, M.J., Brodie, J.F., and Jules, E.S. (2010). Are wolves saving Yellowstone’s aspen? A landscape‐level test of a behaviorally mediated trophic cascade. Ecology 91: 2742–2755, https://doi.org/10.1890/09-1949.1.Suche in Google Scholar

Kerr, J.T. and Deguise, I. (2004). Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7: 1163–1169, https://doi.org/10.1111/j.1461-0248.2004.00676.x.Suche in Google Scholar

Kotviski, B.M., Facure, K.G., Azevedo, F.C., Freitas-Junior, M.C., and Lemos, F.G. (2019). Trophic niche overlap and resource partitioning among wild canids in an anthropizes neotropical ecotone. Mastozool. Neotrop. 26: 368–376, https://doi.org/10.31687/saremmn.19.26.2.0.29.Suche in Google Scholar

Letnic, M., Greenville, A., Denny, E., Dickman, C.R., Tischler, M., Gordon, C., and Koch, F. (2011). Does a top predator suppress the abundance of an invasive mesopredator at a continental scale? Global Ecol. Biogeogr. 20: 343–353, https://doi.org/10.1111/j.1466-8238.2010.00600.x.Suche in Google Scholar

Letnic, M., Ritchie, E.G., and Dickman, C.R. (2012). Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol. Rev. 87: 390–413, https://doi.org/10.1111/j.1469-185x.2011.00203.x.Suche in Google Scholar

Levins, R. (1968). Evolution in changing environments. Princeton University Press, Princeton, New Jersey, USA.10.1515/9780691209418Suche in Google Scholar

Maehr, D.S. and Brady, J.R. (1986). Food-habits of bobcats in Florida. J. Mammal. 67: 133–138, https://doi.org/10.2307/1381009.Suche in Google Scholar

Magioli, M. and Ferraz, K. (2021). Deforestation leads to prey shrinkage for an apex predator in a biodiversity hotspot. Mammal Res. 66: 245–255, https://doi.org/10.1007/s13364-021-00556-9.Suche in Google Scholar

Magioli, M., Moreira, M.Z., Ferraz, K.M.B., Miotto, R.A., de Camargo, P.B., Rodrigues, M.G., Canhoto, M.C.D., and Setz, E.F. (2014). Stable isotope evidence of Puma concolor (felidae) feeding patterns in agricultural landscapes in southeastern Brazil. Biotropica 46: 451–460, https://doi.org/10.1111/btp.12115.Suche in Google Scholar

Magioli, M., Ferraz, K.M.P.M.D.B., Setz, E.Z.F., Percequillo, A.R., Rondon, M.V.D.S.S., Kuhnen, V.V., Canhoto, M.C.d.S., dos Santos, K.E.A., Kanda, C.Z., Fregonezi, G.d.L., et al.. (2016). Connectivity maintain mammal assemblages functional diversity within agricultural and fragmented landscapes. Eur. J. Wildl. Res. 62: 431–446, https://doi.org/10.1007/s10344-016-1017-x. .Suche in Google Scholar

Magioli, M., Moreira, M.Z., Fonseca, R.C.B., Ribeiro, M.C., Rodrigues, M.G., and Ferraz, K. (2019). Human-modified landscapes alter mammal resource and habitat use and trophic structure. Proc. Natl. Acad. Sci. U. S. A 116: 18466–18472, https://doi.org/10.1073/pnas.1904384116.Suche in Google Scholar PubMed PubMed Central

Magioli, M., Villar, N., Jorge, M.L., Biondo, C., Keuroghlian, A., Bradham, J., Pedrosa, F., Costa, V., Moreira, M.Z., Ferraz, K., et al.. (2022). Dietary expansion facilitates the persistence of a large frugivore in fragmented tropical forests. Anim. Conserv. 25: 582–593, https://doi.org/10.1111/acv.12766.Suche in Google Scholar

Manlick, P.J. and Pauli, J.N. (2020). Human disturbance increases trophic niche overlap in terrestrial carnivore communities. Proc. Natl. Acad. Sci. U. S. A 117: 26842–26848, https://doi.org/10.1073/pnas.2012774117.Suche in Google Scholar PubMed PubMed Central

Martin, P.S., Gheler-Costa, C., and Verdade, L.M. (2009). Microstructures of the hair of non-volant small mammals: key to the identification of species from agroecosystems of the State of São Paulo, Brazil. Biota Neotropica 9: 241.10.1590/S1676-06032009000100022Suche in Google Scholar

Martin, P.S., Gheler-Costa, C., Lopes, P.C., Rosalino, L.M., and Verdade, L.M. (2012). Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manag. 282: 185–195, https://doi.org/10.1016/j.foreco.2012.07.002.Suche in Google Scholar

Michel, N., Burel, F., and Butet, A. (2006). How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes? Acta Oecol.-Int. J. Ecol. 30: 11–20, https://doi.org/10.1016/j.actao.2005.12.006.Suche in Google Scholar

Millan, C.H., Develey, P.F., and Verdade, L.M. (2015). Stand-level management practices increase occupancy by birds in exotic Eucalyptus plantations. For. Ecol. Manag. 336: 174–182, https://doi.org/10.1016/j.foreco.2014.10.005.Suche in Google Scholar

Miranda, G.H.B., Rodrigues, F.H.G., and Paglia, A.P. (Eds.) (2014). Guia de identificação de pelos de mamíferos brasileiros. Editora Ciências Forenses, Brasília, p. 112.Suche in Google Scholar

Nagy-Reis, M.B., Iwakami, V.H.S., Estevo, C.A., and Setz, E.Z.F. (2019). Temporal and dietary segregation in a neotropical small-felid assemblage and its relation to prey activity. Mamm. Biol. 95: 1–8, https://doi.org/10.1016/j.mambio.2018.12.005.Suche in Google Scholar

Palomares, F., Gonzalez-Borrajo, N., Chavez, C., Rubio, Y., Verdade, L.M., Monsa, R., Harmsen, B., Adrados, B., and Zanin, M. (2018). Scraping marking behaviour of the largest Neotropical felids. Peer. J. 6: e4983, https://doi.org/10.7717/peerj.4983.Suche in Google Scholar PubMed PubMed Central

Pardini, R., Faria, D., Accacio, G.M., Laps, R.R., Mariano-Neto, E., Paciencia, M.L.B., Dixo, M. and Baumgarten, J. (2009). The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agro-forestry mosaic in southern Bahia. Biol. Conserv. 142: 1178–1190, https://doi.org/10.1016/j.biocon.2009.02.010.Suche in Google Scholar

Pardini, R., Bueno, A.D.A., Gardner, T.A., Prado, P.I., and Metzger, J.P. (2010). Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5: e13666, https://doi.org/10.1371/journal.pone.0013666.Suche in Google Scholar PubMed PubMed Central

Pedo, E., Tomazzoni, A.C., Hartz, S.M., and Christoff, A.U. (2006). Diet of crab-eating fox, Cerdocyon thous (Linnaeus) (Carnivora, Canidae), in a suburban area of southern Brazil. Rev. Bras. Zool. 23: 637–641, https://doi.org/10.1590/s0101-81752006000300005.Suche in Google Scholar

Pereira, A.D., Bogoni, J.A., Bazilio, S., and Orsi, M.L. (2021). Mammalian defaunation across the Devonian kniferidges and meridional plateaus of the Brazilian Atlantic Forest. Biodivers. Conserv. 30: 4005–4022, https://doi.org/10.1007/s10531-021-02288-3.Suche in Google Scholar

Pianka, E.R. (1974). Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. U. S. A 71: 2141–2145, https://doi.org/10.1073/pnas.71.5.2141.Suche in Google Scholar PubMed PubMed Central

Püttker, T., Bueno, A.D., Prado, P.I., and Pardini, R. (2015). Ecological filtering or random extinction? Beta-diversity patterns and the importance of niche-based and neutral processes following habitat loss. Oikos 124: 206–215, https://doi.org/10.1111/oik.01018.Suche in Google Scholar

Quadros, J. and Monteiro, E.L.D. (2006a). Collecting and preparing mammal hairs for identification with optical microscopy. Rev. Bras. Zool. 23: 274–278, https://doi.org/10.1590/s0101-81752006000100022.Suche in Google Scholar

Quadros, J. and Monteiro, E.L.D. (2006b). Review of concepts, microstructural patterns and nomenclature proposal to the guard-hairs of Brazilian mammals. Rev. Bras. Zool. 23: 279–292, https://doi.org/10.1590/s0101-81752006000100023.Suche in Google Scholar

Rocha-Mendes, F., Mikich, S.B., Quadros, J., and Pedro, W.A. (2010). Feeding ecology of carnivores (Mammalia, Carnivora) in Atlantic forest remnants, southern Brazil. Biota Neotropica 10: 21–30, https://doi.org/10.1590/s1676-06032010000400001.Suche in Google Scholar

da Silva, F.R., Begnini, R.M., Lopes, B.C., and Castellani, T.T. (2011). Seed dispersal and predation in the palm Syagrus romanzoffiana on two islands with different faunal richness, southern Brazil. Stud. Neotrop. Fauna Environ. 46: 163–171, https://doi.org/10.1080/01650521.2011.617065.Suche in Google Scholar

Schoener, T.W. (1982). The controversy over interspecific competition. Am. Sci. 70: 586–595.Suche in Google Scholar

Seveque, A., Gentle, L.K., Lopez-Bao, J.V., Yarnell, R.W., and Uzal, A. (2020). Human disturbance has contrasting effects on niche partitioning within carnivore communities. Biol. Rev. 95: 1689–1705, https://doi.org/10.1111/brv.12635.Suche in Google Scholar PubMed

Silveira, F., Sbalqueiro, I.J., and Monteiro, E.L.D. (2013). Identification of the Brazilian species of Akodon (rodentia: Cricetidae: Sigmodontinae) through the microstructure of the hair. Biota Neotropica 13: 339–345, https://doi.org/10.1590/s1676-06032013000100033.Suche in Google Scholar

Smith, J.A., Thomas, A.C., Levi, T., Wang, Y.W., and Wilmers, C.C. (2018). Human activity reduces niche partitioning among three widespread mesocarnivores. Oikos 127: 890–901, https://doi.org/10.1111/oik.04592.Suche in Google Scholar

Sundquist, M. and Sundquist, F. (2002). Wild cats of the world. University of Chicago Press, Chicago.Suche in Google Scholar

Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P., and Peres, C.A. (2010). Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol. Conserv. 143: 2328–2340, https://doi.org/10.1016/j.biocon.2010.02.005.Suche in Google Scholar

Terborgh, J., Lopez, L., Nunez, P., Rao, M., Shahabuddin, G., Orihuela, G., Riveros, M., Ascanio, R., Adler, G.H., Lambert, T.D., et al.. (2001). Ecological meltdown in predator-free forest fragments. Science 294: 1923–1926, https://doi.org/10.1126/science.1064397.Suche in Google Scholar PubMed

Trovati, R.G., de Campos, C.B., and de Brito, B.A. (2008). Notes on convergence and divergence feed of canids and felids (Mammalia: Carnivora) sympatric in the Brazilian Cerrado. Neotrop. Biol. and Conserv. 3: 95–100.Suche in Google Scholar

Vasquez, L.C., Marques, T.S., de Abreu, E.F., Cioci, R., Pina, C.I., and Verdade, L.M. (2021). Diversity of small mammals on the early second commercial cycle of Eucalyptus plantations in southeast Brazil. For. Ecol. Manag. 489: 119052, https://doi.org/10.1016/j.foreco.2021.119052.Suche in Google Scholar

Vavra, M., Parks, C.G. and Wisdom, M.J. (2007). Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. For. Ecol. Manag. 246: 66–72, https://doi.org/10.1016/j.foreco.2007.03.051.Suche in Google Scholar

Verdade, L.M., Rosalino, L.M., Gheler-Costa, C., Pedroso, N.M., and Lyra-Jorge, M.C. (2011). Medium to large-sized mammals in agricultural landscapes of south-eastern Brazil. Mammalia 75: 345–352.10.1515/MAMM.2011.049Suche in Google Scholar

Verdade, L.M., Moral, R.A., Calaboni, A., do Amaral, M., Martin, P.S., Amorim, L.S., Gheler-Costa, C., and Pina, C.I. (2020). Temporal dynamics of small mammals in Eucalyptus plantations in Southeast Brazil. Global Ecol. Conserv. 24: e01217, https://doi.org/10.1016/j.gecco.2020.e01217.Suche in Google Scholar

Vickery, J., Carter, N., and Fuller, R.J. (2002). The potential value of managed cereal field margins as foraging habitats for farmland birds in the UK. Agric. Ecosyst. Environ. 89: 41–52, https://doi.org/10.1016/s0167-8809(01)00317-6.Suche in Google Scholar

Vieira, E.M. and Port, D. (2007). Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272: 57–63, https://doi.org/10.1111/j.1469-7998.2006.00237.x.Suche in Google Scholar

Wallach, A.D., Johnson, C.N., Ritchie, E.G., and O’Neill, A.J. (2010). Predator control promotes invasive dominated ecological states. Ecol. Lett. 13: 1008–1018, https://doi.org/10.1111/j.1461-0248.2010.01492.x.Suche in Google Scholar PubMed

Wilmers, C.C., Crabtree, R.L., Smith, D.W., Murphy, K.M., and Getz, W.M. (2003). Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72: 909–916, https://doi.org/10.1046/j.1365-2656.2003.00766.x.Suche in Google Scholar

Received: 2022-06-26
Accepted: 2023-03-02
Published Online: 2023-03-23
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Ecology
  3. The extirpation of medium and large mammal species from the Ehotilé Islands National Park, south-eastern Côte d’Ivoire
  4. Trophic niche overlap among Neotropical carnivores in a silvicultural landscape
  5. The diet of commensal Crocidura olivieri (Soricomorpha: Soricidae): predation on co-existing invasive Mus musculus suggested by DNA metabarcoding data
  6. Abundance and activity patterns of the endangered margay (Leopardus wiedii) in temperate forest remnants from the avocado landscape in Mexico
  7. Bone growth and body weight patterns in juvenile raccoon dogs in Wakayama Prefecture, western Japan
  8. Bats (Mammalia, Chiroptera) and bat flies (Diptera, Streblidae) found in the largest sandstone cave of Brazil
  9. Occurrence and population status of the pond bat (Myotis dasycneme) in Northwest Russia
  10. Conservation
  11. Distribution and conservation status of the endemic Nilgiri marten (Martes gwatkinsii)
  12. Enlarging the knowledge on the Ecuadorean rodent Rhagomys septentrionalis (Cricetidae: Sigmodontinae) with remarks on rarity in sigmodontines
  13. New records of the Annamite striped rabbit in Ngoc Linh, Quang Nam and Kon Tum provinces, Vietnam
  14. Ethology
  15. New observations on chimpanzee accumulative stone throwing in Boé, Guinea Bissau
  16. Potential opportunistic behavior of crab-eating fox Cerdocyon thous (Carnivora, Canidae) in Itapuã State Park, RS, Brazil: possible cases of necrophagy
  17. Digging deep: hoary marmots (Marmota caligata) use refuge burrows excavated by grizzly bears (Ursus arctos)
  18. Biogeography
  19. New records of Myotis bakeri (Chiroptera: Vespertilionidae), and preliminary evidence of a new zoogeographic pattern
  20. Taxonomy/Phylogeny
  21. The first identification of Tula orthohantavirus in forest dormice (Rodentia: Gliridae) from Iran
  22. Two cases of mole shrews (Anourosorex squamipes) with albinism in southwestern China
  23. Corrigendum
  24. Corrigendum to: Annotations on the taxonomy of the opossums (Didelphimorphia: Didelphidae) of Honduras
Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2022-0073/html?lang=de
Button zum nach oben scrollen