Startseite Dental formula variations in wild and domestic Sus scrofa: is the first premolar agenesis an evolutionary trend?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dental formula variations in wild and domestic Sus scrofa: is the first premolar agenesis an evolutionary trend?

  • Concepción Azorit EMAIL logo , Antonia Oya , Leandro S. L. Hohl , Rafael Carrasco , Oscar Rocha-Barbosa und Adrià Casinos
Veröffentlicht/Copyright: 24. Januar 2022
Mammalia
Aus der Zeitschrift Mammalia Band 86 Heft 3

Abstract

We investigated the occurrence of congenital dental abnormalities in 94 wild boars Sus scrofa scrofa, and 20 Iberian pigs Sus scrofa domesticus from Doñana (DNP) and Sierra de Andújar Natural Park (ANP) southern Spain. The only dental variation found was agenesis of the lower first premolar, either deciduous (Dp1) or permanent (P1). We analyzed prevalence variations using: odds ratios, Fisher’s exact test and logistic-regression models. The lower first premolar has often been reported to be absent in modern domestic breeds of pigs, but it is usually reported as present in wild boar. However, we found a similar occurrence of agenesis in wild boar as in Iberian pigs. A common genotypic background between wild boar and Iberian pig populations of ANP sharing the same ecosystems may explain this result. When considering only wild boar, unexpected differences between populations were detected. The wild boar from ANP showed higher estimated probabilities of agenesis than those from DNP. Environmental conditions can also represent influencing factors for changes within subspecies. Our findings reinforce the idea that in suids the congenital absence of premolars probably has an evolutionary relevance, which could represent a generalized trend towards the reduction of the dental formula from the plesiomorphic placental dentition.


Corresponding author: Concepción Azorit, Department of Animal and Vegetal Biology and Ecology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain, E-mail:

Funding source: European Regional Development Fund

Funding source: Consejería de Ciencia e Innovación, Junta de Andalucía P07-RNM-03087

Funding source: MINECO of Spain CGL2016-78577-P

Funding source: PPGEE Post-Doctoral Program FAPERJ PDR-10 256946

Funding source: L.S.L. Hohl: FAPERJ Programa Pós-Doutorado Nota 10 (name of de organ).

Award Identifier / Grant number: E-26/201.899/2020

Acknowledgments

We thank the hunters, taxidermists, and local wildlife management authorities of Sierra de Andújar Natural Park in Sierra Morena Range and Doñana Natural and National Park for their assistance in the collection of specimens, as well as the owners of the Iberian pig farms for supplying the material of domestic pigs.

  1. Author contributions: CA: conceptualization of the study, methodology, specimens study, hypotheses, discussing results, writing, editing graphic design, and corresponding author. AO: data curation, statistical analyses, hypotheses, discussing results. LH: specimens study, preliminary study, methodology. RC: specimens study, preliminary study, material acquisition. OR: specimens study, preliminary study, funding acquisition. AC: conceptualization of the study, methodology, hypotheses, discussing results and writing. All authors drafted the manuscript and revised it for final approval. All authors agreed to participate in this study and share co-authorship. All authors agreed with the content and gave their explicit consent to submit it for publication.

  2. Research funding: This study was supported by the European Regional Development Fund (FEDER), projects P07-RNM-03087 (Consejería de Ciencia e Innovación, Junta de Andalucía) and Project CGL2016-78577-P (from the MINECO of Spain) and PID2019-111185GB-100, as well as the Prociência Fellowship Program/UERJ, CAPES and CNPq, O. Rocha-Barbosa, (Brazil) and the Programa de Intercâmbio e Mobilidade Acadêmica (PIMA)/Organización de Estados Iberoamericanos (OEI), PPGEE Post-Doctoral Program, FAPERJ PDR-10 256946, FAPERJ Programa Pós-Doutorado Nota 10 (name of de organ), E-26/201.899/2020 (grant number) (L.S.L. Hohl).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Data availability: The datasets and specimens of the current study, stored at the University of Jaén, may be available upon reasonable request to the corresponding author and head of the Research Group PAI-RNM-175 and Vertebrate Laboratory.

  5. Research ethics: The jaws of both wild and domestic animals were obtained from slaughterhouses and rooms equipped for the treatment of domestic and game animals, as well as official taxidermy rooms. Wild boars were hunted in accordance with local regulated hunting plans. In addition, the researchers of the research project have official accreditation in ethics and good animal experimentation practices (BOE 34/8/2-RD 53/2013).

References

Al-Ani, A., Antoun, J.S., Thomson, W.M., Merriman, T., and Farella, M. (2017). Hypodontia: an update on its etiology, classification, and clinical management. BioMed Res. Int. 9: 9378325, https://doi.org/10.1155/2017/9378325.Suche in Google Scholar

Anthony, D.J. and Lewis, E.F. (1961). Diseases of the pig: a handbook of the diseases of the pig, with an introduction to its husbandry. Williams & Wilkins, Baltimore.Suche in Google Scholar

Averianov, A. and Archibald, J.D. (2015). Evolutionary transition of dental formula in Late Cretaceous eutherian mammals. Sci. Nat. 102: 1–8, https://doi.org/10.1007/s00114-015-1308-1.Suche in Google Scholar

Azorit, C. and Moro, J. (2010). El jabalí (Sus scrofa, Linnaeus 1758). In: Moreno, J.S. and Sebastián, A.L. (Eds.), Ungulados silvestres de España: biología y tecnologías reproductivas para su conservación y aprovechamiento cinegético. Instituto Nacional de Investigación y Tecnologías Agrarias, Madrid, pp. 215–240.Suche in Google Scholar

Azorit, C., Muñoz-Cobo, J., and Analla, M. (2002). Abnormal teeth in the Spanish red deer (Cervus elaphus hispanicus). Z. Jagdwiss. 48: 252–260, https://doi.org/10.1007/BF02189696.Suche in Google Scholar

Azorit, C., Tellado, S., Oya, A., and Moro, J. (2012). Seasonal and specific diet variations in sympatric red and fallow deer of southern Spain: a preliminary approach to feeding behaviour. Anim. Prod. Sci. 52: 720–727, https://doi.org/10.1071/an12016.Suche in Google Scholar

Azzaldeen, A., Watted, N., Mai, A., Borbély, P., and Abu-Hussein, M. (2017). Tooth agenesis; aetiological factors. IOSR J. Med. Dent. Sci. 16: 75–85, https://doi.org/10.9790/0853-1601057585.Suche in Google Scholar

Berkovitz, B. and Shellis, P. (2018). Mammalian tooth structure and function. In: Berkovitz, B. and Shellis, P. (Eds.), The teeth of Mammalian vertebrates. Elsevier Academic Press, London, pp. 25–44.10.1016/B978-0-12-802818-6.00002-8Suche in Google Scholar

Boisserie, J.R., Souron, A., Mackaye, H.T., Likius, A., Vignaud, P., and Brunet, M. (2014). A new species of Nyanzachoerus (Cetartiodactyla: Suidae) from the late Miocene Toros-Ménalla, Chad, Central Africa. PLoS One 9: e103221, https://doi.org/10.1371/journal.pone.0103221.Suche in Google Scholar

Boitani, L. and Mattei, L. (1992). Aging wild boar, Sus scrofa by tooth eruption. In: Spitz, F., Janeau, G., González, G., and Aulagnier, S. (Eds.), Ongulés/Ungulates 91. S.F.E.P.M. – I.R.G.M, Paris, Toulouse, pp. 419–421.Suche in Google Scholar

Bosch, J., Peris, S., Fonseca, C., Martínez, M., de la Torre, A., Iglesias, I., and Muñoz, M.J. (2012). Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zool. 61: 138–151, https://doi.org/10.25225/fozo.v61.i2.a7.2012.Suche in Google Scholar

Brad, W.N., Allen, C.M., Damm, D.D., and Chi, A.C. (2019). The color atlas of oral and maxillofacial diseases. Elsevier, Philadelphia.Suche in Google Scholar

Brook, A.H. (1984). A unifying aetiological explanation for anomalies of human tooth number and size. Arch. Oral Biol. 29: 373–378, https://doi.org/10.1016/0003-9969(84)90163-8.Suche in Google Scholar

Caboń, K. (1958). Untersuchungen über die Schädelvariabilität des Wildschweines, Sus scrofa L. aus Nordostpolen. Acta Theriol. 2: 107–140.10.4098/AT.arch.58-6Suche in Google Scholar

Casas, J., Bonachela, S., Moyano, F.J., Fenoy, E., and Hernández, J. (2015). Agricultural practices in the mediterranean: a case study in Southern Spain. In: Preedy, V.R. and Watson, R.R. (Eds.), The Mediterranean diet: an evidence-based approach. Academic Press, London, pp. 23–36.10.1016/B978-0-12-407849-9.00003-8Suche in Google Scholar

Colyer, J.E. (1990). Colyer’s variations and diseases of the teeth of animals, Revised ed. Cambridge: Cambridge University Press.Suche in Google Scholar

Cooke, H.B.S. (1978). Suid evolution and correlation of African hominoid localities: an alternative taxonomy. Science 201: 460–463, https://doi.org/10.1126/science.96530.Suche in Google Scholar

Darwin, C. (1876). The variation of animals and plants under domestication. D. Appleton and Co, New York.Suche in Google Scholar

Delgado, J.V., Barba, C., Camacho, M.E., Sereno, F.T.P.S., Martínez, A., and Vega-Pla, J.L. (2001). Caracterización de los animales domésticos en España. Anim. Genet. Resour. Inf. 29: 7–18, https://doi.org/10.1017/S1014233900005162.Suche in Google Scholar

Ekman, J. (1973). Early medieval Lund, the fauna and the landscape. In: Archaeologica lundensia. Investigationes de antiquitatibus urbis Lundae 5 Lund, Sweden.Suche in Google Scholar

Evin, A., Dobney, K., Schafberg, R., Owen, J., Vidarsdottir, U.S., Larson, G., and Cucchi, T. (2015). Phenotype and animal domestication: a study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evol. Biol. 15: 1–16, https://doi.org/10.1186/s12862-014-0269-x.Suche in Google Scholar

Feldhamer, G.A. and McCann, B.E. (2004). Dental anomalies in wild and domestic Sus scrofa in Illinois. Acta Theriol. 49: 139–143, https://doi.org/10.1007/BF03192515.Suche in Google Scholar

Feldhamer, G.A. and Towery, B.N. (2011). Dental anomalies in the eastern mole (Scalopus aquaticus). Am. Midl. Nat. 165: 421–425, https://doi.org/10.1674/0003-0031-165.2.421.Suche in Google Scholar

Feldhamer, G.A., Drickamer, L.C., Vessey, S.H., and Merritt, J.F. (1999). Mammalogy: adaptation, diversity, and ecology. McGraw-Hill, New York.Suche in Google Scholar

Feldhamer, G.A., Lee, C.D., Stephen, H.V., Joseph, F.M., and Carey, K. (2007). Mammalogy: adaptation, diversity, ecology. Johns Hopkins University Press, Baltimore.Suche in Google Scholar

Flis, M. (2012). Excessive and missing premolars and molars in dentition of male roe deer (Capreolus capreolus L.). Ann. Univ. Mariae Curie-Skłodowska Lublin–Polonia 30: 30–41, https://doi.org/10.2478/v10083-012-0018-9.Suche in Google Scholar

Fournier, B.P., Bruneau, M.H., Toupenay, S., Kerner, S., Berdal, A., Cormier-Daire, A., and de La Dure-Molla, M. (2018). Patterns of dental agenesis highlight the nature of the causative mutated genes. J. Dent. Res. 97: 1306–1316, https://doi.org/10.1177/0022034518777460.Suche in Google Scholar

Genov, P., Massei, G., Barbalova, Z., and Kostova, V. (1992). Aging Wild boar (Sus scrofa L.) by teeth. In: Spitz, F., Janeau, G., Gonzalez, G., and Aulagnier, S. (Eds.), Ongulés/Ungulates 91. S.F.E.P.M. – I.R.G.M, Paris, Toulouse, pp. 399–402.Suche in Google Scholar

Genov, P., Massei, G., and Nikolov, H. (1995). Morphometrical analysis of two Mediterranean Wild boar populations. Ibex J. Mt. Ecol. 3: 69–70.Suche in Google Scholar

Giménez-Anaya, A., Bueno, G., Fernández-Llario, P., Fonseca, C., García-González, R., Herrero, J., Nores, C., and Rosell, C. (2020). What do we know about wild boar in Iberia? In: Angelici, F. M. and Rossi, L. (Eds.), Problematic wildlife II. Springer, pp. 251–271. https://doi.org/10.1007/978-3-030-42335-3.10.1007/978-3-030-42335-3_9Suche in Google Scholar

Gómez‐Olivencia, A., Arceredillo, D., Rios‐Garaizar, J., Garate, D., Iriarte, E., and Pedro, Z.S. (2013). Dental anomalies in the mandible of Capra pyrenaica: presence of two permanent fourth premolars in a Pleistocene wild goat from Arlanpe cave (Bizkaia, Northern Spain). Int. J. Osteoarchaeol. 23: 737–745, https://doi.org/10.1002/oa.1295.Suche in Google Scholar

Groves, C.P. and Grubb, P. (1993). The suborder Suiformes. In: Oliver, W.L.R. (Ed.), Pigs, peccaries, and hippos: status survey and conservation action plan. International Union for Conservation of Nature and Natural Resources, Gland, pp. 1–4.Suche in Google Scholar

Habermehl, K.H. (1957). Über das Gebiß des Hausschweines (Sus scrofa dom. L.) mit besonderer Berücksichtigung der Backenzahnwurzeln. Zentralblatt für Veterinarmed. 4: 794–810, https://doi.org/10.1111/j.1439-0442.1957.tb00505.x.Suche in Google Scholar

Harris, J.M. and White, T.D. (1979). Evolution of the PlioPleistocene African Suidae. Trans. Am. Phil. Soc. 69: 1–128, https://doi.org/10.2307/1006288.Suche in Google Scholar

Herrero, J. (2001). Adaptación funcional del jabalí Sus scrofa L. a un ecosistema forestal y a un sistema agrario intensivo en Aragón, Ph.D. thesis. Madrid, Universidad Complutense de Madrid.Suche in Google Scholar

Herrero-Medrano, J.M., Megens, H.-J., Groenen, M.A.M., Ramis, G., Bosse, M., Pérez-Enciso, M., and Crooijmans, R.P. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genet. 14: 106.10.1186/1471-2156-14-106Suche in Google Scholar PubMed PubMed Central

Hohl, L.S.L., Sicuro, F.L., Azorit, C., Carrasco, R., and Rocha-Barbosa, O. (2014). Age and sex-related geometrical variation of Ramus mandibulae of Sus scrofa’s (Mammalia: Artiodactyla) jaws. Int. J. Morphol. 32: 1282–1288, https://doi.org/10.4067/s0717-95022014000400026.Suche in Google Scholar

Hosmer, D.W. and Lemeshow, S. (2000). Applied logistic regression, 2nd ed. New York: John Wiley & Sons.10.1002/0471722146Suche in Google Scholar

Iurino, D.A. (2013). Body size reduction and tooth agenesis in late Pleistocene Melesmeles (Carnivora, Mammalia) from Ingarano (Southern Italy). Riv. Ital. Paleontol. Stratigr. 120: 109–118.Suche in Google Scholar

Janis, C.M. (1997). Correlations between craniodental morphology and feeding behaviour in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason, J.J. (Ed.), Functional morphology in vertebrate paleontology. Cambridge University Press, New York, pp. 76–98.Suche in Google Scholar

Jogahara, T., Koyasu, K., Oda, S.I., Kawai, T., and Hanamura, H. (2007). Quest for the cause of oligodontia in Suncus murinus (Soricomorpha, Soricidae): morphological re-examination. Arch. Oral Biol. 52: 836–843, https://doi.org/10.1016/j.archoralbio.2007.01.011.Suche in Google Scholar

Jung, T.S., Rivest, G., Blakeburn, D.A., Hamm, E.R., van Eyk, A., Kukka, P.M., and Robitaille, J.F. (2016). Dental anomalies suggest an evolutionary trend in the dentition of wolverine (Gulo gulo). Mamm. Res. 61: 361–366, https://doi.org/10.1007/s13364-016-0284-y.Suche in Google Scholar

Karr, J.R. and James, F.C. (1975). Eco-morphological configurations and convergent evolution in species and communities. In: Cody, M.L. and Diamond, J.M. (Eds.), Ecology and evolution of communities. Harvard University Press, Cambridge.Suche in Google Scholar

Kateri, M. (2014). Contingency table analysis. Methods and implementation using R. Springer, New York.10.1007/978-0-8176-4811-4Suche in Google Scholar

Kolenc-Fusé, F.J. (2004). Agenesias dentarias: en busca de las alteraciones genéticas responsables de la falta de desarrollo. Med. Oral Patol. Oral Cir. Bucal 9: 385–395.Suche in Google Scholar

Labonne, G., Laffont, R., Renvoise, E., Jebrane, A., Labruere, C., Chateau-Smith, C., Navarro, N., and Montuire, S. (2012). When less means more: evolutionary and developmental hypotheses in rodent molars. J. Evol. Biol. 25: 2102–2111, https://doi.org/10.1111/j.1420-9101.2012.02587.x.Suche in Google Scholar

Lee, K. and Koval, J.J. (1997). Determination of the best significance level in forward stepwise logistic regression. Commun. Stat. B 26: 559–575, https://doi.org/10.1080/03610919708813397.Suche in Google Scholar

Legge, A.J. (2013). Practice with science: molar tooth eruption ages in domestic, feral and wild pigs (Sus scrofa). Int. J. Osteoarchaeol.Suche in Google Scholar

Line, S.R.P. (2003). Variation of tooth number in mammalian dentition: connecting genetics, development, and evolution. Evol. Dev. 5: 295–304, https://doi.org/10.1046/j.1525-142X.2003.03036.x.Suche in Google Scholar

Maldonado, G. and Greenland, S. (1993). Simulation study of confounder-selection strategies. Am. J. Epidemiol. 138: 923–936, https://doi.org/10.1093/oxfordjournals.aje.a116813.Suche in Google Scholar

Maldre, L. (2008). Pathological bones amongst the archaeozoological material from Estonian towns. Vet. Zootech. 42: 51–57.Suche in Google Scholar

Malmsten, A., Dalin, A.M., and Pettersson, A. (2015). Caries, periodontal disease, supernumerary teeth and other dental disorders in Swedish wild boar (Sus scrofa). J. Comp. Pathol. 153: 50–57, https://doi.org/10.1016/j.jcpa.2015.04.003.Suche in Google Scholar

Masakazu, A., Kryukov, A., and Motokawa, M. (2012). Dental anomalies in the Japanese mole Mogerawogura from northeast China and the Primorsky region of Russia. Acta Theriol. 57: 41–48, https://doi.org/10.1007/s13364-011-0050-0.Suche in Google Scholar

Matschke, G.H. (1967). Aging European wild hogs by dentition. J. Wildl. Manag. 31: 109–113, https://doi.org/10.2307/3798365.Suche in Google Scholar

McKenna, M.C. (1975). Towards a phylogenetic classification of the Mammalia. In: Luckett, W.P. and Szalay, F.S. (Eds.), Phylogeny of the primates. Plenum Press, New York, pp. 21–46.10.1007/978-1-4684-2166-8_2Suche in Google Scholar

Mecozzi, B. (2020). The European badger Meles meles from Middle Pleistocene to Early Holocene of Italian Peninsula. Fossilia 20: 37–40, https://doi.org/10.32774/FosRepPal.2020.0610.Suche in Google Scholar

Mendoza, M., Janis, C.M., and Palmqvist, P. (2002). Characterizing complex craniodental patterns related to feeding behaviour in ungulates: a multivariate approach. J. Zool. Soc. Lond. 258: 223–246, https://doi.org/10.1017/s0952836902001346.Suche in Google Scholar

Miles, A.E.W. and Grigson, C. (1990). Colyer’s Variations and diseases of the teeth of animals. Cambridge University Press, New York.10.1017/CBO9780511565298Suche in Google Scholar

Moral-Moral, S., Carrasco, R., López-Montoya, A.J., and Azorit, C. (2016). Hunting indexes from official data as a tool to assess the evolution of wild boar populations in Spain. Anales R.A.C.V.A.O. 29: 1–16.Suche in Google Scholar

Moretti, M. (1995). Biometric data and growth rates of a mountain population of Wild boar (Sus scrofa L.), Ticino, Switzerland. Ibex J. Mt. Ecol. 3: 56–59.Suche in Google Scholar

Nieminen, P. (2009). Genetic basis of tooth agenesis. J. Exp. Zool. B Mol. Dev. Evol. 312B: 320–342, https://doi.org/10.1002/jez.b.21277.Suche in Google Scholar

Novacek, M.J. (1986). The primitive eutherian dental formula. J. Vertebr. Paleontol. 6: 191–196, https://doi.org/10.1080/02724634.1986.10011610.Suche in Google Scholar

Peterkova, R., Lesot, H., and Peterka, M. (2006). Phylogenetic memory of developing mammalian dentition. J. Exp. Zool. B Mol. Dev. Evol. 306B: 234–250, https://doi.org/10.1002/jez.b.21093.Suche in Google Scholar

Polder, B.J., Van’t Hof, M.A., Van der Linden, F.P., and Kuijpers-Jagtman, A.M. (2004). A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent. Oral Epidemiol. 32: 217–226, https://doi.org/10.1111/j.1600-0528.2004.00158.x.Suche in Google Scholar

R Core Team (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Suche in Google Scholar

Real Decreto 4/2014. BOE-A-2014-318, Available at: https://www.boe.es/eli/es/rd/2014/01/10/4/con.Suche in Google Scholar

Rosell, C., Fernández-Llario, P., and Herrero, J. (2001). El Jabalí (Sus scrofa Linnaeus, 1758). GALEMYS 13: 1–25.Suche in Google Scholar

Rosell, C. and Herrero, J. (2007). Sus scrofa Linnaeus, 1758. In: Palomo, L.J., Gisbert, J., and Blanco, J.C. (Eds.), Atlas y libro rojo de los mamíferos de España. Dirección General para la Biodiversidad-SECEM -SECEMU, Madrid, pp. 348–351.Suche in Google Scholar

Sáenz de Buruaga, M., Lucio, A.J., and Purroy, F.J. (1991). Reconocimiento de sexo y edad en especies cinegeticas. Consejería de Agricultura y pesca, Alava.Suche in Google Scholar

Sofaer, J.A. (1975). Genetic variation and tooth development. Br. Med. Bull. 31: 107–110, https://doi.org/10.1093/oxfordjournals.bmb.a071261.Suche in Google Scholar

Souron, A. (2012). Histoire évolutive du genre Kolpochoerus (Cetartiodactyla: Suidae) au Plio-Pléistocène en Afrique orientale, Ph.D. Dissertation, Université de Poitiers, p. 517.Suche in Google Scholar

Souron, A., Merceron, G., Blondel, C., Brunetière, N., Colyn, M., Hofman-Kamińska, E., and Boisserie, J.R. (2015). Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia 79: 279–291, https://doi.org/10.1515/mammalia-2014-0023.Suche in Google Scholar

Sutherland-Smith, M. (2015). Suidae and Tayassuidae (Wild Pigs, Peccaries). In: Miller, E.R. and Fowler, M.E. (Eds.), Fowler’s zoo and wild animal medicine, Vol. 8. Saunders-Elsevier, Missouri, pp. 568–584.10.1016/B978-1-4557-7397-8.00058-XSuche in Google Scholar

Tellería, J.L. and Saéz-Royuela, C. (1986). L’évolution démographique du sanglier (Sus scrofa) en Espagne. Mammalia 2: 195–202, https://doi.org/10.1515/mamm.1985.49.2.195.Suche in Google Scholar

Viriot, L., Peterková, R., Peterka, M., and Lesot, H. (2002). Evolutionary implications of the occurrence of two vestigial tooth germs during early odontogenesis in the mouse lower jaw. Connect. Tissue Res. 43: 129–133, https://doi.org/10.1080/03008200290001168.Suche in Google Scholar

Von den Driesch, A. (1975). Die Bewertung pathologisch-anatomischer Veränderungen an vor- und frühgeschichtlichen Tierknochen. In: Clason, A.T. (Ed.), Archaeozoological studies. North-Holland/American Elsevier, Amsterdam, pp. 413–425.Suche in Google Scholar

White, T.D. and Harris, J.M. (1977). Suid evolution and correlation of African hominid localities. Science 198: 13–21, https://doi.org/10.1126/science.331477.Suche in Google Scholar

Zinoview, A.V. (2009). A supernumerary permanent mandibular premolar of wild boar (Sus scrofa L.) from the early medieval Novgorod, Russia. Int. J. Osteoarchaeol. 20: 586–590.10.1002/oa.1075Suche in Google Scholar

Zuur, A.F., Ieno, E.N., and Smith, G.M. (2007). Analysing ecological data. New York: Springer.10.1007/978-0-387-45972-1Suche in Google Scholar

Received: 2021-01-02
Accepted: 2021-11-10
Published Online: 2022-01-24
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Ecology
  3. Factors influencing the success of capturing European brown bears with foot snares
  4. First tracking of an eastern spotted skunk litter from birth to independence
  5. A snapshot of rodents and shrews of agroecosystems in Ethiopian highlands using camera traps
  6. First photographic record of albinism in Baiomys taylori (Rodentia: Cricetidae)
  7. First record for a partial Isabelline colouration in a European mole, Talpa europaea, from Central Italy
  8. The natural history of the Stenodermatinae Chiroderma doriae vizottoi Taddei and Lim 2010 (Chiroptera, Phyllostomidae) in a semiarid region from Brazil
  9. Free-ranging Van Gelder’s bat Bauerus dubiaquercus (Chiroptera: Vespertilionidae) preying on dung beetles in southern Mexico
  10. First report of albinism in a lactating female of the chestnut long-tongued bat Lionycteris spurrelli Thomas, 1913 (Chiroptera, Phyllostomidae)
  11. Fruits consumed by phyllostomid bats in a Peruvian Yungas forest: new dietary items for Chiroderma salvini and Lonchophylla handleyi
  12. Conservation
  13. Distribution of introduced American mink in the Northern Apennine area (Central Italy)
  14. A re-discovery of Coelops frithii (Chiroptera, Hipposideridae) from its type locality after one and a half century
  15. Ethology
  16. Vocalizations of the Sepia short-tailed Opossum Monodelphis adusta (Thomas, 1897, Didelphimorphia: Didelphidae)
  17. Evolutionary Biology
  18. Sexual size dimorphism and geographic variation in forearm length of Rafinesque’s Big-eared Bat (Corynorhinus rafinesquii) and Southeastern Myotis (Myotis austroriparius)
  19. Dental formula variations in wild and domestic Sus scrofa: is the first premolar agenesis an evolutionary trend?
  20. Taxonomy/Phylogeny
  21. Morphological and molecular confirmation of the common pipistrelle bat, Pipistrellus pipistrellus Schreber, 1774 (Vespertilionidae: Chiroptera), in Xinjiang, China
  22. Discovery of Kerivoula kachinensis and a validity of K. titania (Chiroptera: Vespertilionidae) in China
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2021-0001/pdf
Button zum nach oben scrollen