Startseite Long-term stress level in a small mammal species undergoing range expansion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Long-term stress level in a small mammal species undergoing range expansion

  • Adrien André ORCID logo EMAIL logo , Johan Michaux , Jorge Gaitan und Virginie Millien
Veröffentlicht/Copyright: 16. April 2021
Mammalia
Aus der Zeitschrift Mammalia Band 85 Heft 4

Abstract

Rapid climate change is currently altering species distribution ranges. Evaluating the long-term stress level in wild species undergoing range expansion may help better understanding how species cope with the changing environment. Here, we focused on the white-footed mouse (Peromyscus leucopus), a widespread small mammal species in North-America whose distribution range is rapidly shifting northward. We evaluated long-term stress level in several populations of P. leucopus in Quebec (Canada), from the northern edge of the species distribution to more core populations in Southern Quebec. We first tested the hypothesis that populations at the range margin are under higher stress than more established populations in the southern region of our study area. We then compared four measures of long-term stress level to evaluate the congruence between these commonly used methods. We did not detect any significant geographical trend in stress level across our study populations of P. leucopus. Most notably, we found no clear congruence between the four measures of stress level we used, and conclude that these four commonly used methods are not equivalent, thereby not comparable across studies.


Corresponding author: Adrien André, Redpath Museum, McGill University, Montreal, QCH3A 0C4, Canada; and Conservation Genetics Laboratory, University of Liège, Boulevard du rectorat 26, 4000Liège, Belgium, E-mail:

Award Identifier / Grant number: RGPIN-2017-03839

Acknowledgements

We thank S. Leo, S. Turney, field assistants and land owners.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Belgian FRS-FNRS (Fonds de la Recherche Scientifique) fellowship to AA and to JM and by financial grants from the Belgian FRS-FNRS (“credits pour brefs séjours à l’étranger”) to AA and JM, and from the “Patrimoine de l’université de Liège” to AA. VM is supported by a NSERC DG Grant (RGPIN-2017-03839).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  4. Research ethics: All procedures were approved by the Ministère des Ressources Naturelles et de la Faune du Québec (SEG Permit #2011-05-15-014-00-S-F SEG, #2012-07-16-1417-16-17-SF and #2013-07-04-14-16-17-SF), and McGill University Animal Care Committee (AUP#5420).

References

André, A., Millien, V., Galan, M., Ribas, A., and Michaux, J.R. (2017a). Effects of parasite and historic driven selection on the diversity and structure of a MHC-II gene in a small mammal species (Peromyscus leucopus) undergoing range expansion. Evol. Ecol. 31: 785–801, https://doi.org/10.1007/s10682-017-9898-z.Suche in Google Scholar

André, A., Mouton, A., Millien, V., and Michaux, J. (2017b). The microbiome from the Lyme disease principal reservoir host in southern Quebec (Peromyscus leucopus). Infect. Genet. Evol. 52: 10–18.10.1016/j.meegid.2017.04.011Suche in Google Scholar

Ashley, N., Barboza, P., Macbeth, B., Janz, D., Cattet, M., Booth, R., and Wasser, S. (2011). Glucocorticosteroid concentrations in feces and hair of captive caribou and reindeer following adrenocorticotropic hormone challenge. Gen. Comp. Endocrinol. 172: 382–391, https://doi.org/10.1016/j.ygcen.2011.03.029.Suche in Google Scholar

Bjorksten, T.A., Fowler, K., and Pomiankowski, A. (2000). What does sexual trait FA tell us about stress? Trends Ecol. Evol. 15: 163–166, https://doi.org/10.1016/s0169-5347(99)01788-7.Suche in Google Scholar

Bortolotti, G.R., Marchant, T., Blas, J., and Cabezas, S. (2009). Tracking stress: localisation, deposition and stability of corticosterone in feathers. J. Exp. Biol. 212: 1477–1482, https://doi.org/10.1242/jeb.022152.Suche in Google Scholar PubMed

Brakefield, P.M. (1997). Phenotypic plasticity and fluctuating asymmetry as responses to environmental stress in the butterfly Bicyclus anynana. Environmental stress, adaptation and evolution. Birkhäuser Verlag, Basel, Switzerland, pp. 65–78.10.1007/978-3-0348-8882-0_4Suche in Google Scholar

Brown, J.H. (1984). On the relationship between abundance and distribution of species. Am. Nat. 124: 255–279, https://doi.org/10.1086/284267.Suche in Google Scholar

Brown, J.H., Mehlman, D., and Stevens, G. (1995). Spatial variation in abundance. Ecology 76: 2028–2043, https://doi.org/10.2307/1941678.Suche in Google Scholar

Campbell, W.B., Emlen, J.M., and Hershberger, W.K. (1998). Thermally induced chronic developmental stress in coho salmon: integrating measures of mortality, early growth, and developmental instability. Oikos 81: 398–410, https://doi.org/10.2307/3547059.Suche in Google Scholar

Charbonnel, N., Chaval, Y., Berthier, K., Deter, J., Morand, S., Palme, R., and Cosson, J.F. (2008). Stress and demographic decline: a potential effect mediated by impairment of reproduction and immune function in cyclic vole populations. Physiol. Biochem. Zool. 81: 63–73, https://doi.org/10.1086/523306.Suche in Google Scholar PubMed

Charmandari, E., Tsigos, C., and Chrousos, G. (2005). Endocrinology of the stress response. Annu. Rev. Physiol. 67: 259–284, https://doi.org/10.1146/annurev.physiol.67.040403.120816.Suche in Google Scholar PubMed

Cook, N.J. (2012). Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Can. J. Anim. Sci. 92: 227–259, https://doi.org/10.4141/cjas2012-045.Suche in Google Scholar

Cornelissen, T. and Stiling, P. (2010). Small variations over large scales: fluctuating asymmetry over the range of two oak species. Int. J. Plant Sci. 171: 303–309, https://doi.org/10.1086/650202.Suche in Google Scholar

Davies, N.A., Gramotnev, G., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., and Bradley, A. (2013). Physiological stress in koala populations near the arid edge of their distribution. PloS One 8: e79136, https://doi.org/10.1371/journal.pone.0079136.Suche in Google Scholar PubMed PubMed Central

Dickerson, S.S. and Kemeny, M.E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol. Bull. 130: 355, https://doi.org/10.1037/0033-2909.130.3.355.Suche in Google Scholar PubMed

Donahue, J.G., Piesman, J., and Spielman, A. (1987). Reservoir competence of white-footed mice for Lyme disease spirochetes. Am. J. Trop. Med. Hyg. 36: 92–96, https://doi.org/10.4269/ajtmh.1987.36.92.Suche in Google Scholar PubMed

Dryden, I.L. and Mardia, K.V. (1998). Statistical shape analysis. Wiley series in probability and statistics. John Wiley & Sons, Hoboken, N.J.Suche in Google Scholar

Eckert, C.G., Samis, K.E., and Lougheed, S.C. (2008). Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17: 1170–1188, https://doi.org/10.1111/j.1365-294x.2007.03659.x.Suche in Google Scholar PubMed

Ellis, E.C., Kaplan, J.O., Fuller, D.Q., Vavrus, S., Goldewijk, K.K., and Verburg, P.H. (2013). Used planet: a global history. Proc. Natl. Acad. Sci. Unit. States Am. 110: 7978–7985, https://doi.org/10.1073/pnas.1217241110.Suche in Google Scholar PubMed PubMed Central

Fiset, J., Tessier, N., Millien, V., and Lapointe, F.J. (2015). Phylogeographic structure of the white-footed mouse and the deer mouse, two lyme disease reserve hosts in Québec. PloS One 10.10.1371/journal.pone.0144112Suche in Google Scholar PubMed PubMed Central

Flousek, J., Telenský, T., Hanzelka, J., and Reif, J. (2015). Population trends of central European montane birds provide evidence for adverse impacts of climate change on high-altitude species. PloS One 10: e0139465, https://doi.org/10.1371/journal.pone.0139465.Suche in Google Scholar PubMed PubMed Central

Gaitan, J. and Millien, V. (2016). Stress level, parasite load, and movement pattern in a small mammal reservoir host for Lyme disease. Can. J. Zool. 94: 565–573.10.1139/cjz-2015-0225Suche in Google Scholar

Garcia-Elfring, A., Barrett, R.D.H., Combs, M., Davies, T.J., Munshi-South, J., and Millien, V. (2017). Admixture on the northern front: population genomics of range expansion in the white-footed mouse (Peromyscus leucopus) and secondary contact with the deer mouse (Peromyscus maniculatus). Heredity 119: 447–458, https://doi.org/10.1038/hdy.2017.57.Suche in Google Scholar

Garcia-Elfring, A., Barrett, R.D., and Millien, V. (2019). Genomic signatures of selection along a climatic gradient in the northern range margin of the White-Footed Mouse (Peromyscus leucopus). J. Hered. 110: 684–695, https://doi.org/10.1093/jhered/esz045.Suche in Google Scholar

Hansen, J., Ruedy, R., Sato, M., and Lo, K. (2010). Global surface temperature change. Rev. Geophys. 48: RG4004, https://doi.org/10.1029/2010rg000345.Suche in Google Scholar

Hijmans, R. (2016). Geosphere: spherical trigonometry R package version 1.5-5, Available at: <https://CRAN.R-project.org/package=geosphere>.Suche in Google Scholar

Hill, J.K., Thomas, C.D., Fox, R., Telfer, M.G., Willis, S.G., Asher, J., and Huntley, B. (2002). Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269: 2163–2171, https://doi.org/10.1098/rspb.2002.2134.Suche in Google Scholar

IPCC (2014). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, 151(10.1017).Suche in Google Scholar

Jeschke, J.M. and Heger, T. (2018). Enemy release hypothesis. In: Invasion biology. Hypotheses and evidence, 1st ed. CABI, Boston, MA, pp. 92–102.10.1079/9781780647647.0092Suche in Google Scholar

Ji, F., Wu, Z., Huang, J., and Chassignet, E.P. (2014). Evolution of land surface air temperature trend. Nat. Clim. Change 4: 462–466, https://doi.org/10.1038/nclimate2223.Suche in Google Scholar

Kark, S. (2001). Shifts in bilateral asymmetry within a distribution range: the case of the chukar partridge. Evolution 55: 2088–2096, https://doi.org/10.1111/j.0014-3820.2001.tb01323.x.Suche in Google Scholar

Keane, R.M. and Crawley, M.J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17: 164–170, https://doi.org/10.1016/s0169-5347(02)02499-0.Suche in Google Scholar

Keller, J.M., Allen, D.E., Davis, C.R., and Leamy, L.J. (2007). 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin affects fluctuating asymmetry of molar shape in mice, and an epistatic interaction of two genes for molar size. Heredity 98: 259–267, https://doi.org/10.1038/sj.hdy.6800928.Suche in Google Scholar PubMed

Klingenberg, C.P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11: 353–357, https://doi.org/10.1111/j.1755-0998.2010.02924.x.Suche in Google Scholar

Klingenberg, C.P., Barluenga, M., and Meyer, A. (2002). Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909–1920. https://doi.org/10.1554/0014-3820(2002)056[1909:saossq]2.0.co;2.10.1111/j.0014-3820.2002.tb00117.xSuche in Google Scholar

Knierim, U., Van Dongen, S., Forkman, B., Tuyttens, F.A.M., Špinka, M., Campo, J.L., and Weissengruber, G.E. (2007). Fluctuating asymmetry as an animal welfare indicator—a review of methodology and validity. Physiol. Behav. 92: 398–421, https://doi.org/10.1016/j.physbeh.2007.02.014.Suche in Google Scholar

Lackey, J.A., Huckaby, D.G., and Ormiston, B.G. (1985). Peromyscus leucopus. Mamm. Species 247: 1–10, https://doi.org/10.2307/3503904.Suche in Google Scholar

Leary, R.F. and Allendorf, F.W. (1989). Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4: 214–217, https://doi.org/10.1016/0169-5347(89)90077-3.Suche in Google Scholar

Leung, B. and Forbes, M.R. (1996). Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience 3: 400–413, https://doi.org/10.1080/11956860.1996.11682357.Suche in Google Scholar

Liebl, A.L. and Martin, L.B. (2012). Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279: 4375–4381, https://doi.org/10.1098/rspb.2012.1606.Suche in Google Scholar PubMed PubMed Central

Liebl, A.L. and Martin, L.B. (2013). Stress hormone receptors change as range expansion progresses in house sparrows. Biol. Lett. 9: 20130181, https://doi.org/10.1098/rsbl.2013.0181.Suche in Google Scholar PubMed PubMed Central

Macbeth, B.J., Cattet, M.R.L., Stenhouse, G.B., Gibeau, M.L., and Janz, D.M. (2010). Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): considerations with implications for other wildlife. Can. J. Zool. 88: 935–949, https://doi.org/10.1139/z10-057.Suche in Google Scholar

Mastromonaco, G.F., Gunn, K., McCurdy-Adams, H., Edwards, D.B., and Schulte-Hostedde, A.I. (2014). Validation and use of hair cortisol as a measure of chronic stress in eastern chipmunks (Tamias striatus). Conserv. Physiol. 2: cou055, https://doi.org/10.1093/conphys/cou055.Suche in Google Scholar PubMed PubMed Central

Meyer, J.S. and Novak, M.A. (2012). Minireview: hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153: 4120–4127, https://doi.org/10.1210/en.2012-1226.Suche in Google Scholar PubMed PubMed Central

Millien, V., Ledevin, R., Boué, C., and Gonzalez, A. (2017). Rapid morphological divergence in two closely related and co-occurring species over the last 50 years. Evol. Ecol. 31: 847–864, https://doi.org/10.1007/s10682-017-9917-0.Suche in Google Scholar

NASA. (2021). GISS surface temperature analysis (GISTEMP v4), Available at: <https://data.giss.nasa.gov/gistemp/> (Accessed: 18 January 2021).Suche in Google Scholar

Palmer, A.R. and Strobeck, C. (2003). CH 17. Fluctuating asymmetry analyses revisited. In: Developmental instability: causes and consequences. Oxford: Oxford University Press, pp. 279–319.Suche in Google Scholar

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637–669, https://doi.org/10.1146/annurev.ecolsys.37.091305.110100.Suche in Google Scholar

Parsons, P.A. (1990). Fluctuating asymmetry: an epigenetic measure of stress. Biol. Rev. Camb. Phil. Soc. 65: 131–145, https://doi.org/10.1111/j.1469-185x.1990.tb01186.x.Suche in Google Scholar PubMed

Perry, A.L., Low, P.J., Ellis, J.R., and Reynolds, J.D. (2005). Climate change and distribution shifts in marine fishes. Science 308: 1912–1915, https://doi.org/10.1126/science.1111322.Suche in Google Scholar PubMed

Plikaytis, B.D., Holder, P.F., Pais, L.B., Maslanka, S.E., Gheesling, L.L., and Carlone, G.M. (1994). Determination of parallelism and nonparallelism in bioassay dilution curves. J. Clin. Microbiol. 32: 2441–2447, https://doi.org/10.1128/jcm.32.10.2441-2447.1994.Suche in Google Scholar PubMed PubMed Central

Pounds, J.A., Bustamante, M.R., Coloma, L.A., Consuegra, J.A., Fogden, M.P., Foster, P.N., and Young, B.E. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439: 161–167, https://doi.org/10.1038/nature04246.Suche in Google Scholar PubMed

R Core Team. (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: <https://www.R-project.org/>.Suche in Google Scholar

Raftery, A.E., Zimmer, A., Frierson, D.M., Startz, R., and Liu, P. (2017). Less than 2 C warming by 2100 unlikely. Nat. Clim. Change 7: 637–641, https://doi.org/10.1038/nclimate3352.Suche in Google Scholar PubMed PubMed Central

Rahmstorf, S., Cazenave, A., Church, J.A., Hansen, J.E., Keeling, R.F., Parker, D.E., and Somerville, R.C. (2007). Recent climate observations compared to projections. Science 316: 709, https://doi.org/10.1126/science.1136843.Suche in Google Scholar PubMed

Rangel‐Negrín, A., Alfaro, J.L., Valdez, R.A., Romano, M.C., and Serio‐Silva, J.C. (2009). Stress in Yucatan spider monkeys: effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim. Conserv. 12: 496–502.10.1111/j.1469-1795.2009.00280.xSuche in Google Scholar

Revelle, W. (2017). Psych: procedures for personality and psychological research. Northwestern University, Evanston, Illinois, USA, Available at: https://CRAN.R-project.org/package=psychVersion=1.7.5.Suche in Google Scholar

Rogic, A., Tessier, N., Legendre, P., Lapointe, F.J., and Millien, V. (2013). Genetic structure of the white‐footed mouse in the context of the emergence of Lyme disease in southern Québec. Ecol. Evol. 3: 2075–2088, https://doi.org/10.1002/ece3.620.Suche in Google Scholar PubMed PubMed Central

Rohlf, F. (2010). TpsDig2, version 2.16.Suche in Google Scholar

Romero, L.M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19: 249–255, https://doi.org/10.1016/j.tree.2004.03.008.Suche in Google Scholar PubMed

Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., and Pounds, J.A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421: 57–60, https://doi.org/10.1038/nature01333.Suche in Google Scholar PubMed

Roy, B.A. and Stanton, M.L. (1999). Asymmetry of wild mustard, Sinapis arvensis (Brassicaceae), in response to severe physiological stresses. J. Evol. Biol. 12: 440–449, https://doi.org/10.1046/j.1420-9101.1999.00040.x.Suche in Google Scholar

Roy-Dufresne, E., Logan, T., Simon, J.A., Chmura, G.L., and Millien, V. (2013). Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of Lyme disease. PloS One 8: e80724, https://doi.org/10.1371/journal.pone.0080724.Suche in Google Scholar PubMed PubMed Central

Sagarin, R.D., and Gaines, S.D. (2002). The ‘abundant centre’distribution: to what extent is it a biogeographical rule? Ecol. Lett. 5: 137–147, https://doi.org/10.1046/j.1461-0248.2002.00297.x.Suche in Google Scholar

Sapolsky, R.M., Romero, L.M., and Munck, A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21: 55–89, https://doi.org/10.1210/er.21.1.55.Suche in Google Scholar

Schwanz, L.E., Voordouw, M.J., Brisson, D., and Ostfeld, R.S. (2011). Borrelia burgdorferi has minimal impact on the Lyme disease reservoir host Peromyscus leucopus. Vector Borne Zoonotic Dis. 11: 117–124, https://doi.org/10.1089/vbz.2009.0215.Suche in Google Scholar PubMed

Sexton, J.P., McIntyre, P.J., Angert, A.L., and Rice, K.J. (2009). Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40: 415–436, https://doi.org/10.1146/annurev.ecolsys.110308.120317.Suche in Google Scholar

Sheriff, M.J., Dantzer, B., Delehanty, B., Palme, R., and Boonstra, R. (2011). Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166: 869–887, https://doi.org/10.1007/s00442-011-1943-y.Suche in Google Scholar PubMed

Siikamäki, P. and Lammi, A. (1998). Fluctuating asymmetry in central and marginal populations of Lychnis viscaria in relation to genetic and environmental factors. Evolution 52: 1285–1292, https://doi.org/10.1111/j.1558-5646.1998.tb02010.x.Suche in Google Scholar PubMed

Simon, J.A., Marrotte, R.R., Desrosiers, N., Fiset, J., Gaitan, J., Gonzalez, A., and Millien, V. (2014). Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol. Appl. 7: 750–764, https://doi.org/10.1111/eva.12165.Suche in Google Scholar PubMed PubMed Central

Suorsa, P., Huhta, E., Nikula, A., Nikinmaa, M., Jäntti, A., Helle, H., and Hakkarainen, H. (2003). Forest management is associated with physiological stress in an old–growth forest passerine. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270: 963–969, https://doi.org/10.1098/rspb.2002.2326.Suche in Google Scholar PubMed PubMed Central

Thomas, C.D. and Lennon, J.J. (1999). Birds extend their ranges northwards. Nature 399: 213, https://doi.org/10.1038/20335.Suche in Google Scholar

Torchin, M.E., Lafferty, K.D., and Kuris, A.M. (2002). Parasites and marine invasions. Parasitology 124: 137, https://doi.org/10.1017/s0031182002001506.Suche in Google Scholar PubMed

Ulrich-Lai, Y.M., Figueiredo, H.F., Ostrander, M.M., Choi, D.C., Engeland, W.C., and Herman, J.P. (2006). Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 291: E965–E973, https://doi.org/10.1152/ajpendo.00070.2006.Suche in Google Scholar PubMed

Woods, R.E., Sgrò, C.M., Hercus, M.J., and Hoffmann, A.A. (1999). The association between fluctuating asymmetry, trait variability, trait heritability, and stress: a multiply replicated experiment on combined stresses in Drosophila melanogaster. Evolution 53: 493–505, https://doi.org/10.2307/2640785.Suche in Google Scholar

Zachos, F.E., Hartl, G.B., and Suchentrunk, F. (2007). Fluctuating asymmetry and genetic variability in the roe deer (Capreolus capreolus): a test of the developmental stability hypothesis in mammals using neutral molecular markers. Heredity 98: 392–400, https://doi.org/10.1038/sj.hdy.6800954.Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammaila-2020-0041).


Received: 2020-04-22
Accepted: 2021-02-24
Published Online: 2021-04-16
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2020-0041/html
Button zum nach oben scrollen