Home Copularity of French and Dutch (semi-)copular constructions: a behavioral profile analysis
Article
Licensed
Unlicensed Requires Authentication

Copularity of French and Dutch (semi-)copular constructions: a behavioral profile analysis

  • Niek Van Wettere ORCID logo EMAIL logo
Published/Copyright: October 12, 2021

Abstract

This study aims to characterize prototypical copularity in contrast with semi-copulas based on probabilistic distributional traits, which indicate preferential associations rather than absolute restrictions. This evaluation of prototypical copularity will be based on a set of 15 French and Dutch copular verbs. A behavioral profile analysis, involving multiple clustering procedures, will demonstrate that (i) prototypical copulas and semi-copulas are never clustered together in one group and that (ii) the group of prototypical copulas is more homogeneous in comparison with the groups of semi-copulas. Next, the bipartition [prototypical copulas vs. semi-copulas] is examined by means of a Firth logistic regression. Overall, it is shown for both French and Dutch that the pattern [(in)animate subject + prepositional SC] is clearly associated with the semi-copulas, whereas the pattern [inanimate subject + nominal SC] is the most distinctive for the prototypical copulas.


Corresponding author: Niek Van Wettere, Department of Linguistics, Universiteit Gent, Gent, Belgium; and Vrije Universiteit Brussel, Brussels, Belgium, E-mail:

Funding source: Bijzonder Onderzoeksfonds UGent 10.13039/501100007229

Award Identifier / Grant number: 01D35914

Acknowledgments

I would like to thank Peter Lauwers, as well as two anonymous reviewers, for their helpful comments on an earlier version of this paper.

  1. Research funding: The study was supported by Bijzonder Onderzoeksfonds UGent (01D35914).

  2. Supplement: The relevant data package may be found at https://doi.org/10.5281/zenodo.5034743.

References

Allison, Paul D. 2012. Logistic regression using SAS: Theory and application, 2nd edn. Cary, NC: SAS Publishing.Search in Google Scholar

Atkins, Beryl T. Sue. 1987. Semantic ID tags: Corpus evidence for dictionary senses. In Proceedings of the third annual conference of the UW Centre for the New Oxford English Dictionary, 17–36. Waterloo, ON: University of Waterloo.Search in Google Scholar

Booij, Geert E. 2010. Construction morphology. Oxford & New York: Oxford University Press.Search in Google Scholar

Fovell, Robert G. & Mei-Ying C. Fovell. 1993. Climate zones of the conterminous United States defined using cluster analysis. Journal of Climate 6(11). 2103–2135. https://doi.org/10.1175/1520-0442(1993)006<2103:czotcu>2.0.co;2.10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2Search in Google Scholar

Fox, John. 2003. Effect displays in R for generalised linear models. Journal of Statistical Software 8(15). 1–27. https://doi.org/10.18637/jss.v008.i15.Search in Google Scholar

Goldberg, Adele E. 2003. Constructions: A new theoretical approach to language. Trends in Cognitive Sciences 7(5). 219–224. https://doi.org/10.1016/s1364-6613(03)00080-9.Search in Google Scholar

Gries, Stefan Th. 2010. Behavioral profiles: A fine-grained and quantitative approach in corpus-based lexical semantics. The Mental Lexicon 5(3). 323–346. https://doi.org/10.1075/ml.5.3.04gri.Search in Google Scholar

Gries, Stefan Th. & Dagmar Divjak. 2009. Behavioral profiles: A corpus-based approach to cognitive semantic analysis. In Vyvyan Evans & Stéphanie Pourcel (eds.), New directions in cognitive linguistics, 57–75. Amsterdam & Philadelphia: John Benjamins.10.1075/hcp.24.07griSearch in Google Scholar

Harrell, Frank. 2017. Rms: Regression modeling strategies. R package version 5.1-3. https://CRAN.R-project.org/package=rms.Search in Google Scholar

Hengeveld, Kees. 1992. Non-verbal predication: Theory, typology, diachrony. Berlin & New York: Mouton de Gruyter.10.1515/9783110883282Search in Google Scholar

Hennig, Christian. 2015. fpc: Flexible procedures for clustering. R package version 2.1-11.1.Search in Google Scholar

Hosmer, David W. 2013. Applied logistic regression, 3rd edn. Hoboken, NJ: Wiley.10.1002/9781118548387Search in Google Scholar

Husson, François, Julie Josse & Jérôme Pagès. 2010. Principal component methods – hierarchical clustering – partitional clustering: Why would we need to choose for visualizing data? http://factominer.free.fr/ (accessed 20 March 2019).Search in Google Scholar

Husson, François, Lê Sébastien & Jérôme Pagès. 2011. Exploratory multivariate analysis by example using R. Boca Raton, FL: CRC Press.10.1201/b10345Search in Google Scholar

Jolliffe, Ian T. 2002. Principal component analysis, 2nd edn. New York: Springer.Search in Google Scholar

Kassambara, Alboukadel. 2017. Practical guide to cluster analysis in R: Unsupervised machine learning, 1st edn. Scotts Valley, CA: CreateSpace Independent Publishing Platform.Search in Google Scholar

Kassambara, Alboukadel & Fabian Mundt. 2017. Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.5. https://CRAN.R-project.org/package=factoextra/readme/README.html.10.32614/CRAN.package.factoextraSearch in Google Scholar

Kaufman, Leonard & Peter J. Rousseeuw. 2005. Finding groups in data: An introduction to cluster analysis. Hoboken, NJ: Wiley.Search in Google Scholar

Kilgarriff, Adam, Vít Baisa, Bušta Jan, Miloš Jakubíček, Vojtěch Kovář, Michelfeit Jan, Pavel Rychlý & Vít Suchomel. 2014. The sketch engine: Ten years on. Lexicography 1(1). 7–36. https://doi.org/10.1007/s40607-014-0009-9.Search in Google Scholar

Kleiber, Georges. 1990. La sémantique du prototype: Catégories et sens lexical. Paris: Presses universitaires de France.Search in Google Scholar

Kosmidis, Ioannis. 2019. brglm2: Bias reduction in generalized linear models. R package version 0.5.1. https://r-project.org/web/packages/brglm2/readme/README.html.Search in Google Scholar

Lauwers, Peter. 2008. Les emplois attributifs de faire. Studia Neophilologica 80(1). 43–64. https://doi.org/10.1080/00393270701679940.Search in Google Scholar

Lauwers, Peter. 2009. La prédication “attributive”. Portée, structuration interne et statut théorique. In Amr Helmy Ibrahim (ed.), Prédicats, prédication et structures prédicatives, 178–202. Paris: CRL.Search in Google Scholar

Lauwers, Peter. 2011. The modification of predicative bare nouns in French: A functional analysis. Transactions of the Philological Society 109(1). 12–40. https://doi.org/10.1111/j.1467-968x.2011.01248.x.Search in Google Scholar

Lauwers, Peter & Els Tobback. 2010. Les verbes attributifs: Inventaire(s) et statut(s). Langages 179–180(3). 79–113. https://doi.org/10.3917/lang.179.0079.Search in Google Scholar

Lauwers, Peter & Els Tobback. 2013. Copularization processes in French: Constructional intertwining, lexical attraction, and other dangerous things. Folia Linguistica Historica 34(1). 115–147. https://doi.org/10.1515/flih.2013.005.Search in Google Scholar

Lê, Sébastien, Julie Josse & François Husson. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25(1). 1–18. https://doi.org/10.18637/jss.v025.i01.Search in Google Scholar

Levshina, Natalia. 2015. How to do linguistics with R: Data exploration and statistical analysis. Amsterdam & Philadelphia: John Benjamins Publishing Company.10.1075/z.195Search in Google Scholar

Los, Bettelou, Corrien Blom, Geert E. Booij, Marion Elenbaas & Ans van Kemenade. 2012. Morphosyntactic change: A comparative study of particles and prefixes. Cambridge: Cambridge University Press.10.1017/CBO9780511998447Search in Google Scholar

Prentice, Ross L. & Ronald Pyke. 1979. Logistic disease incidence models and case-control studies. Biometrika 66. 403–411. https://doi.org/10.1093/biomet/66.3.403.Search in Google Scholar

Sekula, Michael, Somnath Datta & Susmita Datta. 2017a. OptCluster: An R package for determining the optimal clustering algorithm. Bioinformation 13(3). 101–103. https://doi.org/10.6026/97320630013101.Search in Google Scholar

Sekula, Michael, Somnath Datta & Susmita Datta. 2017b. OptCluster: Determine optimal clustering algorithm and number of clusters. R package version 1.1.1. https://CRAN.R-project.org/web/packages/optCluster/.Search in Google Scholar

Studer, Matthias. 2012. Étude des inégalités de genre en début de carrière académique à l’aide de méthodes innovatrices d’analyse de données séquentielles. Geneva: Université de Genève dissertation.Search in Google Scholar

Suzuki, Ryota & Hidetoshi Shimodaira. 2006. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12). 1540–1542. https://doi.org/10.1093/bioinformatics/btl117.Search in Google Scholar

Van Eynde, Frank, Liesbeth Augustinus, Ineke Schuurman & Vandeghinste Vincent. 2014. Het verrassende resultaat van een copulativiteitspeiling. In Freek Van de Velde, Hans Smessaert, Frank Van Eynde & Sara Verbrugge (eds.), Patroon en argument: Een dubbelfeestbundel bij het emeritaat van William Van Belle en Joop van der Horst, 47–62. Leuven: Universitaire Pers Leuven.10.2307/j.ctt14jxsr0.6Search in Google Scholar

Van Wettere, Niek. 2018. Copularité et productivité: Une analyse contrastive des verbes attributifs issus de verbes de mouvement en français et en néerlandais. Ghent: Ghent University dissertation.Search in Google Scholar

Van Wettere, Niek. 2021. Productivity of French and Dutch (semi-)copular constructions and the adverse impact of high token frequency. International Journal of Corpus Linguistics 26. 396–428. https://doi.org/10.1075/ijcl.19043.van.Search in Google Scholar

Wiechmann, Daniel. 2011. Exploring probabilistic differences between genetically related languages. Languages in Contrast 11(2). 193–215. https://doi.org/10.1075/lic.11.2.03wie.Search in Google Scholar

YiLan, Luo & Zeng RuTong. 2015. Clustertend: Check the clustering tendency. R package version 1.4. https://CRAN.R-Project.org/package=clustertend.Search in Google Scholar

Received: 2019-05-12
Accepted: 2020-10-29
Published Online: 2021-10-12
Published in Print: 2021-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ling-2021-0160/html
Scroll to top button