Home Technology Experimental study on natural convection in the vertical enclosure of a double coaxial cylinder
Article
Licensed
Unlicensed Requires Authentication

Experimental study on natural convection in the vertical enclosure of a double coaxial cylinder

  • Y. Zhang , T. Takeda and Y. Inaba
Published/Copyright: March 16, 2022
Become an author with De Gruyter Brill

Abstract

This paper presents results of an experimental study on natural convection in the vertical enclosure of a double coaxial cylinder where the inner wall is at constant heat flux. It is the objective of this experiment to understand the basic characteristics of heat transfer under the condition of natural convection coupled with thermal radiation in a vertical enclosure. The range of Rayleigh numbers based on the width of the double coaxial cylinder is set to be 5.6 × 105 < Ra < 1.04 × 108, the radius ratio is 2.73, the aspect ratio is 3.43 (cylinder length divided by annular gap). The heat transfer coefficient of natural convection coupled with thermal radiation was obtained as function of the Rayleigh number, aspect ratio of the enclosure, and temperature of the hot and cold surfaces. The experimental results show that thermal radiation can’t be neglected in analyzing heat transfer of vertical annulus with natural convection. The results provide the basic data for the design and the performance assessment of the future passive cooling system used in a high-temperature engineering test reactor.

Abstract

In der vorliegenden Arbeit werden die Ergebnisse einer experimentellen Untersuchung zur natürlichen Konvektion im vertikalen Gehäuse eines doppelt-koaxialen Zylinders präsentiert. Ziel der Untersuchung war es, die grundlegenden Eigenschaften des Wärmetransfers unter Bedingungen der natürlichen Konvektion gekoppelt mit thermischer Strahlung in einem vertikalen Gehäuse zu verstehen. Der Bereich der Rayleigh-Nummern liegt bei 5.6 × 105 < Ra < 1.04 × 108, das Verhältnis der Radien ist 2.73, das Längenverhältnis ist 3.43 (Zylinderlänge dividiert durch Ringschlitzlänge). Der Wärmetransferkoeffizient der natürlichen Konvektion gekoppelt mit thermischer Strahlung wurde als Funktion der Rayleigh-Nummer, des Längenverhältnisses des Gehäuses und der Temperatur der warmen und kalten Oberflächen bestimmt. Die experimentellen Ergebnisse zeigen, dass die thermische Strahlung bei der Analyse des Wärmetransfers nicht vernachlässigt werden kann. Die Ergebnisse liefern die Grundlagen für die Konstruktions- und Leistungsmerkmale des zukünftigen passiven Kühlsystems eines Hochtemperatur-Testreaktors.

Nomenclature

H =

Aspect ratio of the cylinder, l/d

l =

Height of the annulus, m

d =

Distance of the annulus, m

Pr =

Prandtl number

Nu =

Nusselt number

Nua =

Nusselt number based on the thermal radiation and the convection

Nuc =

Nusselt number based on the convection

Ra(d) =

Rayleigh number based on the distance of the annulus, GrPr

Gr =

Grashof number

T0 =

Temperature on the outer surface of the heated rod, K

T1 =

Temperature on the inner surface of the cylinder, K

g =

Constant of gravitational acceleration, m/s2

β =

Isobaric coefficient of thermal expansion, K-1 Cinematic viscosity, m2/s

Rr =

Heat flux ratio, ρra

qa

Heat flux based on the thermal radiation and the convection, W/m2

qr =

Heat flux based on the thermal radiation, W/m2

References

1 Saikusa, A.; Kunitomi, K. and Shiozawa, S.: Advanced Vessel Cooling System Concept For High-Temperature Gas-Cooled Reactors. Nuclear Technology 118 (1997) 8910.13182/NT97-A35370Search in Google Scholar

2 Eckert, E.R.G. and Carlson,W.O.: Natural convection in an air layer enclosed between two vertical plates with different temperatures. Int. J. Heat Mass Transfer 2 (1961) 10610.1016/0017-9310(61)90019-9Search in Google Scholar

3 Landis, F. and Yanowitz, H.: Transient natural convection in a narrow vertical cell. Proceedings, Third International Heat Transfer Conference, Chicago, Vol. 2, pp. 139–151 (1966)10.1615/IHTC3.950Search in Google Scholar

4 Sheriff, N.: Experimental Investigation of Natural Convection in Single and Multiple Vertical Annuli with High Pressure Carbon Dioxide. Proc. of Third International Heat Transfer Conference, Chicago, Vol.2, 132–138 (1966)10.1615/IHTC3.940Search in Google Scholar

5 Keyhani, M.; Kulacki, F. A.; Christensen, R. N.: Free Convection in a Vertical Annulus With Constant Heat Flux on the Inner Wall. J. of Heat Transfer 105 (1983) 45410.1115/1.3245606Search in Google Scholar

6 Jakob, M.: Heat transfer.Wiley, New York (1949)Search in Google Scholar

7 Gill, A.E.: The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech. 26 (1966) 51510.1017/S0022112066001368Search in Google Scholar

8 Thomas, R.W. and de Vahl Davis, G.: Natural Convection in Annular and Rectangular Cavity, A Numerical Study. Proceedings, Fourth International Heat Transfer Conference, Paris, Vol. 4, Paper NC 2.4, Elsevier, Amsterdam, 197010.1615/IHTC4.3470Search in Google Scholar

9 Bejan, A.: Laminar natural convection heat transfer in a horizontal cavity with different end temperatures. J. Heat Transfer 100 (1978) 64710.1115/1.3450870Search in Google Scholar

10 MacGregor, R.K. and Emery, A.F.: J. Heat Transfer 91 (1969) 39110.1115/1.3580194Search in Google Scholar

11 Elder, J.W.: Numerical experiments with free convection in a vertical slot. J. Fluid Mech. 24 (1966) 82310.1017/S0022112066001022Search in Google Scholar

Received: 2003-05-04
Published Online: 2022-03-16

© 2003 Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2003-0093/pdf
Scroll to top button