Home Technology A mathematic model of two-phase flow taking account of sub-cooled boiling, condensation, and void flashing
Article
Licensed
Unlicensed Requires Authentication

A mathematic model of two-phase flow taking account of sub-cooled boiling, condensation, and void flashing

  • S. Y. Jiang , X. Yang and Y. Zhang
Published/Copyright: March 16, 2022
Become an author with De Gruyter Brill

Abstract

Based on a physical model of the test loop HRTL-5 simulating the 5 MW nuclear heating reactor, a drift-flux model of two-phase flow has been derived, in which the sub-cooled boiling and saturated boiling in the heated section, condensation and void flashing in the adiabatic riser etc, are taken into account. It is suitable to investigate the natural circulation two-phase flow, especially at heating reactor conditions. By introducing the concept of condensation boundary layer, a condensation formula has been derived and complemented into the drift-flux model, which was used to investigate the behavior of the HRTL-5 in our previous research works. Based on the mathematical model, a computer program has been developed. At first, through comparing the calculations with the experimental results, the parameters in the two-phase drift-flux model have been determined. Then calculations on the flow characteristics of HRTL-5 have been performed, including the simulation of the mass flow rate and the distribution of various physical variables. At last, the characteristic curves of natural circulation have been simulated; thereby, also useful experiences have been acquired.

Abstract

Auf der Basis eines mathematischen Modells der Testanlage HRTL-5, die einen 5 MW Heizreaktor simuliert, wurde ein Drift-Flux-Modell der Zwei-Phasen Strömung entwickelt, unter Berücksichtigung von unterkühltem Blasensieden im Heizbereich, Kondensation und Blasenverdampfung im adiabatischen Steigrohr usw. Es ist wichtig, die Zwei-Phasen-Strömung in einem System mit Naturumlauf zu untersuchen, insbesondere unter den Bedingungen eines Heizreaktors. Durch Einführung des Konzepts einer Kondensationsgrenzschicht wurde eine Kondensationsformel entwickelt und in das Drift-Flux-Modell integriert, das bereits zur Untersuchung des Verhaltens der HRTL-Testanlage in den vorangegangenen Forschungsarbeiten verwendet wurde. Auf der Grundlage des mathematischen Modells wurde ein Computerprogramm entwickelt. Zuerst wurden die Parameter des Zwei-Phasen-Drift-Flux-Modells bestimmt durch Vergleich der Rechenergebnisse mit den experimentellen Ergebnissen. Dann wurden Berechnungen der Strömungseigenschaften der HRTL-Testanlage durchgeführt, einschließlich der Simulation der Massenströmungsdichte und der Verteilung verschiedener physikalischer Variablen. Zuletzt wurden die charakteristischen Kurven des Naturumlaufs simuliert und dabei wichige Erfahrungen gesammelt.

  1. Project supported by Trans ± Century Training Program Foundation for the Talents by the Ministry of Education.

List of symbols

α =

void fraction

ρ =

density

p =

pressure

P z =

pressure drop along the direction of z

P z 1 =

local pressure drop

P z f =

friction pressure drop

P z g =

gravity pressure drop

u =

velocity

h =

specific enthalpy

U =

perimeter of heated rods

q =

heat flux density per unit area

A =

flow area

Qc =

heat condensed from vapor to water per unit length

Ψ =

fraction of heat-generated vapor at surface of heated rod

τ =

rate of vapor condensation or generation

C0 =

distribution parameter in drift model

uvj =

slippage velocity in drift model

J =

volume flow velocity of two-phase mixture

G =

mass flow rate

T =

temperature

ur =

relative velocity of bubble and liquid

δ =

thickness of condensation boundary layer

N =

enthalpy flow rate

λ =

coefficient of the liquid heat conduction

Rb =

radius of sub-cooled steam bubble

nb =

bubbles per unit length

cp =

specific heat capacity at const pressure

r =

latent heat

ule =

inlet velocity of liquid

T =

temperature difference or sub-cooling

t =

time

Subscripts

t =

sensible heat

c =

latent heat

l =

liquid

v =

vapor

lv =

difference between liquid and steam

L =

local

F =

flow resistance

G =

gravity pressure drop

S =

saturation

in =

inlet

y =

distance from the steam-liquid interface

References

1 Wang, D. Z.; Ma, C.W.; Dong, D.; Ling, J.G.: A 5 MWnuclear heating reactor. Trans. Am. Nucl. Soc. 61 (1990) 466Search in Google Scholar

2 Bankoff, S.G.: A variable density single-fluid model for two-phase flow with particular reference to steam-water flow. Trans ASME Ser C J Heat Transfer 82 (1960) 26510.1115/1.3679930Search in Google Scholar

3 Zuber, N.; Findlay, J. A.: Average Volumetric Concentration in Two-Phase Flow Systems. Trans. Of the ASME 87 (1965) 45310.1115/1.3689137Search in Google Scholar

4 Ishii, M.: Two-fluid model for two-phase flow. Multiphase science and Technology 5. Ed. Hewitt, G.F.; Delhaye, J.M.; Zuber, N. New York, Washington, Philadelphia, London. Hemisphere Publishing Corporation. 1990, 1–6310.1615/MultScienTechn.v5.i1-4.10Search in Google Scholar

5 Yang, X. T.: Study on Flow Excursion at Natural Circulation Condition. PH.D Paper, China: Tsinghua University, April, 2002Search in Google Scholar

6 Jiang, S. Y. et al.: Experimental study of two-phase flow ocillation in natural circulation. Nuclear Science and Engineering 135 (2000) 17710.13182/NSE00-A2133Search in Google Scholar

7 Jiang, S.Y; Emendorfer, D.: Subcooled boiling and void flashing in a natural circulation system at heating reactor conditions. Kerntechnik 58 (1993) 27310.1515/kern-1993-580509Search in Google Scholar

8 Aritomi, M. and Chiang, J. H.: Geysering in Parallel Boiling Channels. Nucl. Eng. Des. 141 (1993) 11110.1016/0029-5493(93)90096-RSearch in Google Scholar

9 Jiang, S. Y.; Zhang, Y. J.;Wu, X. X.: Flow Excursion Phenomenon in a Natural Circulation at Nuclear Heating Reactor Conditions. Kerntechnik 64 (1999) 22510.1515/kern-1999-640417Search in Google Scholar

10 Marotti, L.: Axial distribution of void fraction in sub-cooled boiling. J. of Nucl Technology 34 (1977) 810.13182/NT77-A31825Search in Google Scholar

11 Lahy, R.T.; Moody, F.J.: The Thermal-Hydraulics of a BoilingWater Nuclear Reactor. AEC-Mongraph, American Nuclear Society, 1977Search in Google Scholar

Received: 2003-06-05
Published Online: 2022-03-16

© 2003 Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/kern-2003-0091/pdf
Scroll to top button