Home Evaluating the performance of elite level volleyball players
Article
Licensed
Unlicensed Requires Authentication

Evaluating the performance of elite level volleyball players

  • Gilbert W. Fellingham EMAIL logo
Published/Copyright: February 23, 2022

Abstract

Evaluation of individuals in a team sport setting is inherently difficult. The level of play of one individual is fundamentally tied to the level of play of the teammates. One way to think about evaluation of individuals is to ‘insert’ the posterior distribution of the parameter that measures individual play into an ‘average’ team, and see how the probability of success (or failure) changes. Using a Bayesian hierarchical logistic model, we can estimate both the average contribution to success of various positions, and the individual contribution of all the players in that position. In this paper, we use data from the 2018 World Championships in Volleyball to model both the position played and the players within each position. Using both the posterior distributions for the mean performance of the different positions, and the posterior distributions for the individual players, we can then estimate the change in the number of points scored for a team with a change from an average player to the individual under consideration. We compute both the points scored above average per set (PAAPS) and the points scored above average per 100 touches (PP100) for 168 men and 168 women playing five different positions. Contributions of the various position groups and of individual players within each position are evaluated and compared.


Corresponding author: Gilbert W. Fellingham, Brigham Young University, Provo, USA, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A
Figure 3: 
Trace plot for the parameter of male libero number 39 computed in the model of errors. The Geweke statistic for this parameter was −2.65.
Figure 3:

Trace plot for the parameter of male libero number 39 computed in the model of errors. The Geweke statistic for this parameter was −2.65.

Figure 4: 
Trace plot for the parameter of female opposite number 61 computed in the model of kills. The Geweke statistic for this parameter was −2.54.
Figure 4:

Trace plot for the parameter of female opposite number 61 computed in the model of kills. The Geweke statistic for this parameter was −2.54.

Appendix B

The following tables show the setter, libero, and opposite with the most touches, and the two middle blockers and outside hitters with the most touches for each team in the 2018 World Championship Volleyball tournaments for both men and women.

Table 4:

Performance of PAAPS and PP100 for the primary setter of each team entered in the 2018 Men’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Christenson Setter USA M 0.46 0.37 26.6 1.73 1.40
Fujii Setter Japan M 0.28 0.49 28.06 0.99 1.74
Arredondo Setter Cuba M −0.37 0.48 27.58 −1.34 1.74
Cavanna Setter Argentina M 0.28 0.49 32.77 0.85 1.49
Blankenau Setter Canada M −0.06 0.46 29.81 −0.19 1.54
Rezende Setter Brazil M 0.70 0.40 28.74 2.43 1.39
Peacock Setter Australia M 0.41 0.40 26.92 1.54 1.50
Mao Setter China M −0.23 0.49 27.94 −0.83 1.76
Marouflakrani Setter Iran M 0.55 0.43 28.8 1.91 1.50
D’Hulst Setter Belgium M 0.32 0.45 28.15 1.14 1.59
Seganov Setter Bulgaria M 0.03 0.44 27.28 0.11 1.60
Tervaportti Setter Finland M 0.20 0.47 30.36 0.67 1.54
Slimene Setter Tunisia M 0.58 0.45 26.59 2.18 1.71
Toniutti Setter France M 0.52 0.41 28.62 1.83 1.45
Abdalla Setter Egypt M 0.19 0.43 23.47 0.80 1.82
Perez Setter Puerto_Rico M 0.45 0.48 27.56 1.63 1.74
Giannelli Setter Italy M 0.47 0.37 25.44 1.86 1.46
Vincic Setter Slovenia M 0.22 0.40 25.06 0.88 1.61
Haarlem Setter Netherlands M −0.14 0.42 26.25 −0.54 1.59
Jovovic Setter Serbia M 0.02 0.38 26.87 0.08 1.41
Drzyzga Setter Poland M −0.6 0.43 27.48 −2.17 1.58
Butko Setter Russia M −0.29 0.41 25.31 −1.16 1.63
Burgos Setter Dominican_R M 0.06 0.53 28.06 0.21 1.88
Awal Setter Cameroon M 0.13 0.46 26.31 0.49 1.75
Table 5:

Performance of PAAPS and PP100 for the primary setter of each team entered in the 2018 Women’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Lloyd Setter USA W 0.10 1.24 73.00 0.14 1.70
Kitipova Setter Bulgaria W 1.89 1.19 65.82 2.87 1.81
Hanke Setter Germany W 2.46 1.16 62.81 3.91 1.85
Malinov Setter Italy W 1.26 0.97 61.95 2.04 1.57
Dijkema Setter Netherlands W −0.50 1.08 63.57 −0.79 1.70
Startseva Setter Russia W 3.45 1.14 64.82 5.32 1.75
Ognienovic Setter Serbia W 3.35 1.03 65.30 5.13 1.58
Ozbay Setter Turkey W −1.55 1.19 60.30 −2.58 1.98
Galiano Setter Argentina W −0.89 1.32 54.00 −1.65 2.45
Ratzke Setter Brazil W −0.61 1.05 52.13 −1.17 2.01
Ding Setter China W 0.93 0.98 62.16 1.50 1.57
Tashiro Setter Japan W 0.08 1.17 70.36 0.11 1.66
Akilova Setter Kazakhstan W −0.14 1.33 51.27 −0.27 2.58
Guedpard Setter Thailand W 2.70 1.16 62.06 4.35 1.87
Cyr Setter Canada W 0.26 1.30 55.18 0.47 2.36
Sabin Setter Cuba W −0.67 1.33 50.47 −1.33 2.64
Frica Setter Dominican_Rep W 2.34 0.97 51.78 4.52 1.88
Sashiko Setter Mexico W −0.52 1.12 53.07 −0.99 2.12
Valentin Setter Puerto_Rico W 3.15 1.34 69.48 4.53 1.93
Wairimu Setter Kenya W 0.19 1.15 43.67 0.44 2.63
Lee Setter S. Korea W 0.08 1.36 59.41 0.14 2.29
Koulla Setter Cameroon W −2.40 1.24 48.12 −5.00 2.58
Forde Setter Trinidad&Tobago W 1.75 1.24 51.31 3.41 2.41
Yagubova Setter Azerbaijan W −0.79 1.10 53.67 −1.48 2.05
Table 6:

Performance of PAAPS and PP100 for the two primary middle blockers of each team entered in the 2018 Men’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Holt Middle USA M 0.12 0.17 9.73 1.27 1.70
Smith Middle USA M 0.10 0.13 7.12 1.39 1.77
Yamauchi Middle Japan M 0.01 0.17 8.76 0.12 1.95
Fushimi Middle Japan M −0.07 0.09 4.27 −1.64 2.19
Arce Middle Cuba M −0.05 0.21 10.71 −0.51 1.95
Rodriguez Middle Cuba M −0.07 0.14 6.89 −1.07 2.07
Sole Middle Argentina M 0.13 0.20 11.51 1.09 1.71
Loser Middle Argentina M −0.28 0.17 8.33 −3.38 2.05
Vigrass Middle Canada M −0.01 0.17 9.46 −0.06 1.79
Vandoorn Middle Canada M −0.10 0.12 5.95 −1.72 2.01
Saatkamp Middle Brazil M −0.06 0.18 10.43 −0.53 1.71
Souza Middle Brazil M −0.03 0.12 6.22 −0.43 1.87
Mote Middle Australia M 0.03 0.18 10.17 0.34 1.76
Graham Middle Australia M 0.11 0.13 7.32 1.51 1.79
Chen Middle China M 0.03 0.21 10.81 0.32 1.91
Rao Middle China M −0.02 0.18 8.75 −0.23 2.02
Shafiei Middle Iran M −0.09 0.19 10.46 −0.85 1.81
Eraghi Middle Iran M 0.01 0.12 6.68 0.13 1.87
Voorde Middle Belgium M 0.07 0.18 10.12 0.69 1.82
Verhees Middle Belgium M −0.14 0.18 9.57 −1.46 1.93
Yosifov Middle Bulgaria M −0.21 0.20 10.16 −2.02 1.94
Gotsev Middle Bulgaria M 0.02 0.13 6.89 0.27 1.95
Sinkkonen Middle Finland M 0.10 0.17 9.82 1.04 1.75
Siirila Middle Finland M −0.02 0.11 5.63 −0.43 1.95
Miladi Middle Tunisia M 0.01 0.18 8.68 0.14 2.04
Agrebi Middle Tunisia M −0.09 0.13 5.96 −1.57 2.21
Le Goff Middle France M 0.01 0.17 9.58 0.12 1.79
Chinenyeze Middle France M −0.03 0.11 5.7 −0.51 1.98
Abou Middle Egypt M 0.11 0.15 7.74 1.36 1.97
Masoud Middle Egypt M 0.05 0.11 5.4 0.92 2.04
Colon Middle Puerto_Rico M −0.13 0.20 9.49 −1.40 2.11
Rodriguez Middle Puerto_Rico M 0.00 0.15 7.36 0.00 2.06
Anzani Middle Italy M 0.01 0.16 9.41 0.11 1.74
Mazzone Middle Italy M 0.26 0.13 7.93 3.29 1.7
Pajenk Middle Slovenia M −0.15 0.17 8.76 −1.74 1.9
Kozamernik Middle Slovenia M 0.10 0.15 8.30 1.15 1.78
Parkinson Middle Netherlands M −0.19 0.21 10.61 −1.83 1.99
Diefenbach Middle Netherlands M 0.16 0.14 7.53 2.19 1.84
Lisinac Middle Serbia M 0.07 0.16 10.18 0.72 1.61
Podrascanin Middle Serbia M 0.07 0.12 6.82 1.02 1.74
Kochanowski Middle Poland M 0.04 0.17 9.98 0.36 1.73
Nowakowski Middle Poland M 0.06 0.17 9.73 0.66 1.76
Muserskiy Middle Russia M 0.23 0.17 10.03 2.29 1.67
Kurkaev Middle Russia M −0.02 0.17 9.41 −0.19 1.83
Romero Middle Dominican_R M −0.09 0.17 7.97 −1.15 2.16
Paulino Middle Dominican_R M 0.00 0.16 7.76 0.04 2.06
Dolegombai Middle Cameroon M −0.05 0.20 10.34 −0.52 1.98
Engala Middle Cameroon M −0.07 0.13 6.17 −1.07 2.13
Table 7:

Performance of PAAPS and PP100 for the two primary middle blockers of each team entered in the 2018 Women’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Akinradewo Middle USA W 0.53 0.46 23.6 2.26 1.96
Adams Middle USA W 0.63 0.35 15.97 3.92 2.18
Dimitrova Middle Bulgaria W 1.77 0.50 25.68 6.90 1.93
Ruseva Middle Bulgaria W 0.36 0.46 21.12 1.71 2.15
Grunding Middle Germany W 0.10 0.48 20.07 0.52 2.41
Vanjak Middle Germany W −0.08 0.43 17.31 −0.44 2.49
Danesi Middle Italy W 0.03 0.40 21.33 0.15 1.88
Chirichella Middle Italy W 0.16 0.34 17.28 0.90 1.95
Belien Middle Netherlands W −0.40 0.41 20.5 −1.96 2.00
Lohuis Middle Netherlands W 0.00 0.30 12.97 0.04 2.30
Koroleva Middle Russia W 0.30 0.48 21.9 1.36 2.17
Fetisova Middle Russia W 0.85 0.45 20.59 4.13 2.20
Rasic Middle Serbia W 1.05 0.42 22.31 4.71 1.89
Veljkovic Middle Serbia W 0.72 0.33 15.56 4.64 2.10
Dundar Middle Turkey W 1.00 0.50 24.12 4.14 2.07
Gunes Middle Turkey W 0.90 0.46 21.38 4.22 2.16
Sosa Middle Argentina W 0.75 0.56 20.43 3.67 2.74
Lazcano Middle Argentina W −0.23 0.54 18.81 −1.24 2.87
Correa Middle Brazil W 0.22 0.45 19.62 1.12 2.28
Da Silva Middle Brazil W 0.19 0.30 11.04 1.74 2.71
Yuan Middle China W 1.52 0.42 24.00 6.33 1.76
Yan Middle China W 1.77 0.38 21.35 8.27 1.80
Shinomiya Middle Japan W 0.00 0.45 22.23 0.02 2.04
Okumura Middle Japan W −0.70 0.47 22.04 −3.16 2.15
Petrenko Middle Kazakhstan W 0.30 0.54 18.97 1.58 2.86
Safronova Middle Kazakhstan W 0.06 0.33 10.07 0.58 3.26
Thinkaow Middle Thailand W 0.99 0.43 20.51 4.81 2.08
Nuekjang Middle Thailand W 0.92 0.38 17.56 5.22 2.14
Maglio Middle Canada W 0.73 0.49 18.21 3.99 2.70
Cross Middle Canada W −0.10 0.51 17.42 −0.57 2.95
Aguiliera Carbajal Middle Cuba W 0.19 0.48 17.03 1.14 2.81
Suarez Middle Cuba W −0.23 0.41 13.72 −1.71 2.97
Mejia Middle Dominican_Rep W 1.04 0.45 19.41 5.36 2.33
Martinez Middle Dominican_Rep W 0.36 0.36 14.35 2.48 2.52
Valle Middle Mexico W −0.44 0.40 14.25 −3.06 2.83
Moreno Hernandez Middle Mexico W −0.76 0.37 12.55 −6.02 2.96
Sofia Jusino Middle Puerto_Rico W −0.91 0.51 18.66 −4.85 2.71
Ortiz Middle Puerto_Rico W 0.03 0.45 16.82 0.19 2.68
Mukuvilani Middle Kenya W −0.58 0.47 14.7 −3.93 3.22
Atuka Middle Kenya W −0.02 0.25 7.22 −0.23 3.48
Kim Middle S. Korea W −0.14 0.50 17.50 −0.83 2.85
Lee Middle S. Korea W 0.55 0.30 9.70 5.72 3.07
Mogoung Middle Cameroon W 0.51 0.48 16.53 3.09 2.93
Aboa Mbeza Middle Cameroon W −0.24 0.45 13.95 −1.75 3.22
Jack Middle Trinidad&Tobago W 0.98 0.37 14.44 6.81 2.59
Ross Middle Trinidad&Tobago W −0.40 0.24 6.82 −5.79 3.47
Hasanova Middle Azerbaijan W 0.49 0.40 17.02 2.89 2.33
Imanova Middle Azerbaijan W −0.52 0.36 13.47 −3.84 2.68
Table 8:

Performance of PAAPS and PP100 for the two primary outside hitters of each team entered in the 2018 Men’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Sander Outside USA M 0.09 0.27 18.38 0.49 1.47
Russell Outside USA M −0.15 0.28 18.35 −0.84 1.52
Fukuzawa Outside Japan M 0.24 0.33 18.92 1.26 1.76
Ishikawa Outside Japan M 0.08 0.31 17.47 0.47 1.78
Castro Outside Cuba M −0.20 0.35 19.18 −1.03 1.80
Hernandez Outside Cuba M 0.14 0.23 13.15 1.05 1.76
Poglajen Outside Argentina M 0.03 0.33 21.27 0.15 1.57
Conte Outside Argentina M 0.17 0.25 16.08 1.03 1.55
Hoag Outside Canada M −0.06 0.29 18.97 −0.29 1.55
Perrin Outside Canada M 0.53 0.25 17.76 2.97 1.43
Souza Outside Brazil M 0.52 0.26 18.62 2.81 1.37
Fonteles Outside Brazil M 0.12 0.22 14.33 0.85 1.54
Sanderson Outside Australia M −0.14 0.34 19.01 −0.76 1.77
Staples Outside Australia M −0.18 0.22 12.2 −1.45 1.83
Liu Outside China M 0.16 0.32 18.86 0.86 1.70
Ji Outside China M −0.19 0.23 11.49 −1.68 1.99
Ghara H. Outside Iran M 0.15 0.30 19.01 0.81 1.56
Manavinezhad Outside Iran M 0.08 0.18 11.05 0.71 1.67
Deroo Outside Belgium M −0.05 0.30 18.63 −0.26 1.61
Rousseaux Outside Belgium M 0.03 0.19 10.63 0.25 1.74
Skrimov Outside Bulgaria M 0.10 0.32 19.69 0.53 1.63
Penchev Outside Bulgaria M 0.24 0.31 18.41 1.33 1.71
Krastins Outside Finland M −0.50 0.34 19.75 −2.54 1.74
Suihkonen Outside Finland M −0.12 0.28 15.92 −0.72 1.73
Hmissi Outside Tunisia M −0.34 0.34 16.82 −1.99 2.00
Miladi Outside Tunisia M −0.29 0.31 16.04 −1.81 1.94
Ngapeth Outside France M 0.10 0.29 19.69 0.52 1.50
Tillie Outside France M 0.04 0.22 12.91 0.34 1.67
Shafik Outside Egypt M 0.06 0.27 15.09 0.40 1.81
Hassan Outside Egypt M −0.03 0.17 8.08 −0.34 2.06
Eddie Outside Puerto_Rico M 0.07 0.36 19.55 0.36 1.83
Guzman Outside Puerto_Rico M −0.08 0.28 14.51 −0.53 1.96
Juantorena Outside Italy M 0.12 0.27 17.71 0.66 1.55
Lanza Outside Italy M −0.38 0.21 11.63 −3.28 1.83
Urnaut Outside Slovenia M −0.43 0.30 18.13 −2.37 1.67
Cebulj Outside Slovenia M 0.12 0.21 13.22 0.87 1.59
Horst Outside Netherlands M 0.13 0.32 19.48 0.69 1.62
Jorna Outside Netherlands M −0.33 0.32 16.59 −1.96 1.90
Ivovic Outside Serbia M 0.51 0.27 19.37 2.66 1.40
Kovacevic Outside Serbia M 0.32 0.25 17.34 1.85 1.44
Szalpuk Outside Poland M −0.14 0.31 19.70 −0.69 1.56
Kubiak Outside Poland M 0.31 0.25 17.48 1.77 1.41
Kliuka Outside Russia M 0.21 0.29 19.46 1.10 1.51
Volkov Outside Russia M 0.08 0.30 19.42 0.43 1.55
Lopez Outside Dominican_R M 0.32 0.32 18.19 1.77 1.76
Cruz Outside Dominican_R M −0.07 0.13 6.54 −1.03 2.06
Hile Outside Cameroon M 0.08 0.35 18.94 0.41 1.85
Engohe Outside Cameroon M −0.04 0.27 13.73 −0.27 1.97
Table 9:

Performance of PAAPS and PP100 for the two primary outside hitters of each team entered in the 2018 Women’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Larson Outside USA W −1.73 0.82 50.30 −3.43 1.63
Hill Outside USA W −0.31 0.69 40.89 −0.75 1.68
Dimitrova Outside Bulgaria W 0.06 0.84 46.14 0.14 1.82
Karakasheva Outside Bulgaria W −2.17 0.81 40.47 −5.36 2.01
Geerties Outside Germany W 0.19 0.84 44.69 0.42 1.88
Brinker-Fromm Outside Germany W 0.92 0.59 31.16 2.96 1.88
Bosetti Outside Italy W −0.12 0.70 45.44 −0.26 1.55
Sylla Outside Italy W 0.61 0.58 36.97 1.66 1.56
Balkestein-Grothues Outside Netherlands W −1.57 0.79 45.07 −3.48 1.75
Buijs Outside Netherlands W −0.55 0.70 42.86 −1.29 1.64
Voronkova Outside Russia W −0.22 0.80 45.56 −0.49 1.75
Parubets Outside Russia W 0.83 0.80 44.64 1.87 1.78
Mihajlovic Outside Serbia W −0.20 0.78 45.97 −0.45 1.71
Busa Outside Serbia W −0.57 0.65 37.94 −1.49 1.72
Ismailoglu Outside Turkey W 1.31 0.81 42.93 3.05 1.89
Baladin Outside Turkey W −1.50 0.63 26.99 −5.55 2.33
Fernandez Outside Argentina W −0.87 0.99 39.93 −2.18 2.49
Rodriguez Outside Argentina W 0.62 0.94 39.52 1.58 2.39
Guimaraes Outside Brazil W 0.03 0.79 40.52 0.07 1.94
Rodrigues Outside Brazil W 0.73 0.68 34.67 2.12 1.96
Zhu Outside China W −0.38 0.73 46.54 −0.81 1.56
Zhang Outside China W 0.17 0.47 26.11 0.64 1.78
Koga Outside Japan W −1.50 0.82 47.91 −3.12 1.71
Ishii Outside Japan W 0.20 0.66 37.86 0.54 1.75
Anarkulova Outside Kazakhstan W 0.28 1.07 38.07 0.73 2.81
Beresneva Outside Kazakhstan W 0.44 0.74 26.18 1.66 2.83
Apinyapong Outside Thailand W 0.84 0.77 43.13 1.94 1.78
Sittirak Outside Thailand W −1.04 0.75 39.38 −2.64 1.91
Bailey Outside Canada W −1.28 1.00 40.47 −3.16 2.47
Gray Outside Canada W 0.04 0.73 29.15 0.13 2.5
Case Montalvo Outside Cuba W 0.51 0.89 36.53 1.41 2.43
Perez Outside Cuba W 0.17 0.76 30.76 0.57 2.46
Pena Outside Dominican_Rep W −1.44 0.87 41.12 −3.51 2.12
Martinez Outside Dominican_Rep W 0.55 0.63 27.82 1.99 2.25
Bricio Outside Mexico W 1.12 0.70 36.18 3.09 1.93
Parra Quintero Outside Mexico W 0.59 0.65 31.31 1.87 2.06
Enright Outside Puerto_Rico W −2.44 0.86 43.43 −5.61 1.97
Santana Outside Puerto_Rico W 0.33 0.81 43.19 0.76 1.87
Murambi Outside Kenya W 1.15 0.87 33.2 3.47 2.62
Moim Outside Kenya W 0.75 0.89 32.84 2.30 2.71
Kim Outside S. Korea W −0.36 0.88 38.74 −0.92 2.28
Lee Outside S. Korea W −1.59 0.63 22.84 −6.98 2.78
Nana Outside Cameroon W 0.90 0.88 34.41 2.60 2.55
Fawziya Outside Cameroon W −0.69 0.75 26.93 −2.55 2.78
Ramdin Outside Trinidad&Tobago W −0.74 0.91 35.62 −2.09 2.55
Channon Outside Trinidad&Tobago W −0.30 0.87 35.30 −0.85 2.46
Bayramova Outside Azerbaijan W −0.29 0.79 37.97 −0.76 2.09
Samadova Outside Azerbaijan W −1.47 0.58 24.66 −5.97 2.36
Table 10:

Performance of PAAPS and PP100 for the primary opposite of each team entered in the 2018 Men’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Anderson Opposite USA M 0.08 0.23 15.09 0.52 1.52
Nishida Opposite Japan M 0.08 0.29 15.00 0.52 1.9
Gutierrez Miguel Opposite Cuba M −0.40 0.30 15.63 −2.55 1.91
Gonzalez Opposite Argentina M −0.10 0.29 15.60 −0.64 1.86
Vernon-Evans Opposite Canada M 0.04 0.22 12.66 0.35 1.75
Souza Opposite Brazil M −0.09 0.25 15.14 −0.57 1.63
Williams Opposite Australia M 0.48 0.26 16.16 3.00 1.62
Jiang Opposite China M 0.17 0.31 17.72 0.96 1.75
Ghafour Opposite Iran M −0.18 0.28 15.58 −1.16 1.77
Dries Opposite Belgium M 0.06 0.23 13.6 0.44 1.73
Uchikov Opposite Bulgaria M −0.05 0.25 13.84 −0.39 1.8
Sivula Opposite Finland M −0.35 0.30 16.16 −2.18 1.85
Boungui Opposite Tunisia M 0.19 0.30 16.06 1.21 1.89
Boyer Opposite France M −0.06 0.25 14.69 −0.41 1.69
Abdelhay Opposite Egypt M 0.02 0.26 13.18 0.11 1.94
Torres Opposite Puerto_Rico M 0.18 0.29 16.25 1.09 1.79
Zaytsev Opposite Italy M 0.33 0.21 13.70 2.41 1.52
Gasparini Opposite Slovenia M 0.02 0.22 12.92 0.19 1.72
Abdel-Aziz Opposite Netherlands M −0.26 0.30 16.66 −1.55 1.78
Atanasijevic Opposite Serbia M 0.11 0.25 15.78 0.69 1.59
Kurek Opposite Poland M 0.22 0.23 15.25 1.44 1.54
Mikhaylov Opposite Russia M −0.02 0.24 14.78 −0.13 1.66
Santana Opposite Dominican_R M 0.02 0.27 13.50 0.18 2.00
Feughouo Opposite Cameroon M 0.08 0.31 16.25 0.50 1.93
Table 11:

Performance of PAAPS and PP100 for the primary opposite of each team entered in the 2018 Women’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Murphy Opposite USA W −1.03 0.73 34.91 −2.94 2.09
Paskova Opposite Bulgaria W −0.27 0.64 30.19 −0.90 2.12
Lippmann Opposite Germany W 0.76 0.74 38.07 2.00 1.95
Egonu Opposite Italy W 1.12 0.63 38.77 2.90 1.62
Sloetjes Opposite Netherlands W 2.28 0.66 40.06 5.70 1.64
Goncharova Opposite Russia W 2.17 0.72 34.22 6.33 2.10
Boskovic Opposite Serbia W 1.29 0.66 37.32 3.46 1.76
Boz Opposite Turkey W 0.16 0.68 31.13 0.52 2.17
Fresco Opposite Argentina W −0.52 0.73 25.53 −2.04 2.86
Caixeta Opposite Brazil W 0.41 0.65 32.84 1.26 1.97
Gong Opposite China W 0.70 0.64 38.05 1.84 1.69
Shinnabe Opposite Japan W −0.14 0.77 39.62 −0.35 1.93
Zhdanova Opposite Kazakhstan W −0.98 0.82 25.8 −3.79 3.19
Kanthong Opposite Thailand W −0.75 0.81 40.16 −1.87 2.02
Van Ryk Opposite Canada W −0.56 0.76 29.29 −1.90 2.58
Sabin Opposite Cuba W 0.43 0.87 29.18 1.49 2.97
Isabel Opposite Dominican_Rep W −0.37 0.73 32.13 −1.15 2.26
Rangel Opposite Mexico W 1.45 0.63 31.53 4.60 2.01
Ocasio Opposite Puerto_Rico W 0.97 0.6 29.59 3.27 2.04
Makuto Opposite Kenya W −0.23 0.67 20.67 −1.13 3.26
Park Opposite S. Korea W 0.57 0.89 32.9 1.74 2.71
Bassoko Opposite Cameroon W 0.59 0.79 29.19 2.01 2.72
Esdelle Opposite Trinidad&Tobago W −1.02 0.73 27.06 −3.77 2.69
Rahimova Opposite Azerbaijan W 1.98 0.60 28.8 6.89 2.10
Table 12:

Performance of PAAPS and PP100 for the primary libero of each team entered in the 2018 Men’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Shoji Libero USA M −0.06 0.15 8.86 −0.72 1.69
Tsuiki Libero Japan M 0.11 0.22 11.18 1.01 1.97
Alvarez Libero Cuba M 0.02 0.16 8.63 0.24 1.90
Gonzalez Libero Argentina M 0.25 0.16 9.69 2.62 1.65
Marshall Libero Canada M −0.45 0.22 10.61 −4.26 2.11
Hoss Libero Brazil M 0.21 0.14 8.97 2.37 1.58
Perry Libero Australia M 0.04 0.15 8.91 0.49 1.72
Tong Libero China M 0.08 0.16 8.50 0.89 1.89
Marandi Libero Iran M −0.16 0.22 11.20 −1.43 1.98
Stuer Libero Belgium M 0.09 0.18 9.83 0.92 1.83
Salparov Libero Bulgaria M −0.02 0.18 9.89 −0.21 1.78
Kerminen Libero Finland M 0.13 0.17 9.70 1.33 1.73
Taouerghi Libero Tunisia M −0.08 0.20 10.18 −0.75 1.97
Grebennikov Libero France M 0.10 0.16 9.47 1.03 1.71
Abdelaal Libero Egypt M −0.09 0.21 9.65 −0.94 2.19
Del Valle Libero Puerto_Rico M 0.07 0.23 11.65 0.57 1.94
Colaci Libero Italy M 0.11 0.13 7.60 1.42 1.75
Kovacic Libero Slovenia M 0.01 0.15 8.33 0.09 1.77
Sparidans Libero Netherlands M 0.21 0.19 11.18 1.90 1.66
Rosic Libero Serbia M 0.03 0.15 8.4 0.36 1.74
Zatorski Libero Poland M 0.22 0.15 9.69 2.29 1.54
Verbov Libero Russia M −0.34 0.18 9.36 −3.62 1.92
Mieses Libero Dominican_R M −0.29 0.21 9.69 −3.00 2.16
Fossi Libero Cameroon M 0.05 0.16 8.31 0.56 1.93
Table 13:

Performance of PAAPS and PP100 for the primary libero of each team entered in the 2018 Women’s World Championship Volleyball tournament.

Name Position Team Mean SD TPS Mean SD
PAAPS PAAPS PP100 PP100
Robinson Libero USA W 0.03 0.47 25.90 0.13 1.83
Todorova Libero Bulgaria W −0.64 0.59 28.04 −2.27 2.10
Durr Libero Germany W 0.13 0.52 25.20 0.52 2.08
De Gennaro Libero Italy W −0.37 0.45 25.27 −1.45 1.79
Knip Libero Netherlands W 0.19 0.45 22.31 0.83 2.01
Galkina Libero Russia W −1.08 0.58 25.96 −4.15 2.23
Popovic Libero Serbia W 0.17 0.39 19.93 0.87 1.95
Sebnem Akoz Libero Turkey W 1.21 0.45 21.30 5.68 2.13
Martinez Franchi Libero Argentina W 0.43 0.63 23.13 1.85 2.72
Pinto Libero Brazil W 0.00 0.43 19.7 0.02 2.17
Wang Libero China W 0.82 0.40 21.53 3.8 1.88
Kobata Libero Japan W 1.27 0.51 26.55 4.79 1.93
Fendrikova Libero Kazakhstan W −1.17 0.65 21.53 −5.44 3.03
Pannoy Libero Thailand W −0.25 0.54 25.11 −1.01 2.17
Niles Libero Canada W 0.25 0.53 19.88 1.24 2.64
Tamayo Libero Cuba W −0.40 0.51 17.59 −2.28 2.89
Castillo Libero Dominican_Rep W −0.13 0.56 25.07 −0.51 2.22
Lopez Robles Libero Mexico W 0.53 0.46 20.23 2.63 2.26
Venegas Libero Puerto_Rico W 0.68 0.49 23.55 2.90 2.10
Wanyama Libero Kenya W −0.48 0.62 19.47 −2.47 3.20
Kim Libero S. Korea W 0.18 0.62 24.41 0.74 2.52
Ntame Libero Cameroon W 0.49 0.60 23.06 2.14 2.60
Olton Libero Trinidad&Tobago W 0.27 0.59 22.12 1.21 2.68
Karimova Libero Azerbaijan W −0.3 0.50 22.40 −1.32 2.24

References

Baumer, B. S., S. T. Jensen, and G. J. Matthews. 2015. “Openwar: An Open Source System for Evaluating Overall Player Performance in Major League Baseball.” Journal of Quantitative Analysis in Sports 11 (2): 69–84. https://doi.org/10.1515/jqas-2014-0098.Search in Google Scholar

Carruth, M., and S. Jensen. 2007. “Evaluating Throwing Ability in Baseball.” Journal of Quantitative Analysis in Sports 3 (3). https://doi.org/10.2202/1559-0410.1079.Search in Google Scholar

de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and R. Bodik. 2017. “Programming with Models: Writing Statistical Algorithms for General Model Structures with Nimble.” Journal of Computational & Graphical Statistics 26: 403–13. https://doi.org/10.1080/10618600.2016.1172487.Search in Google Scholar

Drikos, S., I. Ntzoufras, and N. Apostolidis. 2019. “Bayesian Analysis of Skills Importance in World Champions Men’s Volleyball across Ages.” International Journal of Computer Science in Sport 18 (1): 24–44. https://doi.org/10.2478/ijcss-2019-0002.Search in Google Scholar

Egidi, L., and J. Gabry. 2018. “Bayesian Hierarchical Models for Predicting Individual Performance in Soccer.” Journal of Quantitative Analysis in Sports 14 (3): 143–57. https://doi.org/10.1515/jqas-2017-0066.Search in Google Scholar

Egidi, L., and I. Ntzoufras. 2020. “A Bayesian Quest for Finding a Unified Model for Predicting Volleyball Games.” Applied Statistics (JRSS C) 69 (5): 1307–36. https://doi.org/10.1111/rssc.12436.Search in Google Scholar

Fellingham, G., B. Collings, and C. McGown. 1994. “Developing an Optimal Scoring System with a Special Emphasis on Volleyball.” Research Quarterly for Exercise & Sport 65 (3): 237–43. https://doi.org/10.1080/02701367.1994.10607624.Search in Google Scholar

Fellingham, G. W., and J. D. Fisher. 2018. “Predicting Home Run Performance in Major League Baseball Using a Bayesian Semiparametric Model.” The American Statistician 72: 253–64. https://doi.org/10.1080/00031305.2017.1401959.Search in Google Scholar

Ferrante, M., and G. Fonseca. 2014. “On the Winning Probabilities and Mean Durations of Volleyball.” Journal of Quantitative Analysis in Sports 10 (2): 91–8. https://doi.org/10.1515/jqas-2013-0098.Search in Google Scholar

Florence, L. W., G. W. Fellingham, P. R. Vehrs, and N. P. Mortensen. 2008. “Skill Evaluation in Women’s Volleyball.” Journal of Quantitative Analysis in Sports 4 (2). https://doi.org/10.2202/1559-0410.1105.Search in Google Scholar

Gabrio, A. 2021. “Bayesian Hierarchical Models for Prediction of Volleyball Games.” Journal of Applied Statistics 48 (2): 301–21. https://doi.org/10.1080/02664763.2020.1723506.Search in Google Scholar

Gelman, A., and D. B. Rubin. 1992. “Inferences from Iterative Simulation Using Multiple Sequences.” Statistical Science 7: 457–511. https://doi.org/10.1214/ss/1177011136.Search in Google Scholar

Geweke, J. 1992. “Evaluating the Accuracy of Sampling-Based Approaches to the Calculations of Posterior Moments.” Bayesian Statistics 4: 641–9.10.21034/sr.148Search in Google Scholar

Jensen, S. T., K. E. Shirley, and A. J. Wyner. 2009. “Bayesball: A Bayesian Hierarchical Model for Evaluating Fielding in Major League Baseball.” Annals of Applied Statistics 3 (2): 491–520. https://doi.org/10.1214/08-aoas228.Search in Google Scholar

Lewis, S. M., and A. E. Raftery. 1992. “One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo.” Statistical Science 7: 493–7.10.1214/ss/1177011143Search in Google Scholar

Mendes, F., J. Nascimento, E. Souza, C. Collet, J. Milistetd, and H. Carvalho. 2018. “Retrospective Analysis of Accumulated Structured Practice: A Bayesian Multilevel Analysis of Elite Brazilian Volleyball Players.” High Ability Studies 29 (2): 255–69. https://doi.org/10.1080/13598139.2018.1507901.Search in Google Scholar

Miskin, M., G. W. Fellingham, and L. W. Florence. 2010. “Skill Importance in Women’s Volleyball.” Journal of Quantitative Analysis in Sports 6 (2). https://doi.org/10.2202/1559-0410.1234.Search in Google Scholar

Patsiaouras, A., K. Charitonidis, A. Moustakidis, and D. Kokaridas. 2009. “Comparison of Technical Skills Effectiveness of Men’s National Volleyball Teams.” International Journal of Performance Analysis in Sport 9 (1): 1–7.10.1080/24748668.2009.11868460Search in Google Scholar

Piette, J., A. Braunstein, B. B. McShane, and S. T. Jensen. 2010. “A Point-Mass Mixture Random Effects Model for Pitching Metrics.” Journal of Quantitative Analysis in Sports 6 (3). https://doi.org/10.2202/1559-0410.1237.Search in Google Scholar

Plummer, M. 2006. “Coda: Convergence Diagnosis and Output Analysis for Mcmc.” R News 6 (1): 7–11.Search in Google Scholar

R Core Team 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Search in Google Scholar

Silva, M., D. Lacerda, and P. V. Joao. 2014. “Game-related Volleyball Skills that Influence Victory.” Journal of Human Kinetics 41: 173–9. https://doi.org/10.2478/hukin-2014-0045.Search in Google Scholar

Yurko, R., S. Ventura, and M. Horowitz. 2019. “Nflwar: a Reproducible Method for Offensive Player Evaluation in Football.” Journal of Quantitative Analysis in Sports 15 (3): 163. https://doi.org/10.1515/jqas-2018-0010.Search in Google Scholar

Received: 2021-06-29
Accepted: 2022-01-27
Published Online: 2022-02-23
Published in Print: 2022-03-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jqas-2021-0056/html
Scroll to top button