Abstract
Evaluation of individuals in a team sport setting is inherently difficult. The level of play of one individual is fundamentally tied to the level of play of the teammates. One way to think about evaluation of individuals is to ‘insert’ the posterior distribution of the parameter that measures individual play into an ‘average’ team, and see how the probability of success (or failure) changes. Using a Bayesian hierarchical logistic model, we can estimate both the average contribution to success of various positions, and the individual contribution of all the players in that position. In this paper, we use data from the 2018 World Championships in Volleyball to model both the position played and the players within each position. Using both the posterior distributions for the mean performance of the different positions, and the posterior distributions for the individual players, we can then estimate the change in the number of points scored for a team with a change from an average player to the individual under consideration. We compute both the points scored above average per set (PAAPS) and the points scored above average per 100 touches (PP100) for 168 men and 168 women playing five different positions. Contributions of the various position groups and of individual players within each position are evaluated and compared.
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Trace plot for the parameter of male libero number 39 computed in the model of errors. The Geweke statistic for this parameter was −2.65.

Trace plot for the parameter of female opposite number 61 computed in the model of kills. The Geweke statistic for this parameter was −2.54.
The following tables show the setter, libero, and opposite with the most touches, and the two middle blockers and outside hitters with the most touches for each team in the 2018 World Championship Volleyball tournaments for both men and women.
Performance of PAAPS and PP100 for the primary setter of each team entered in the 2018 Men’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Christenson | Setter | USA M | 0.46 | 0.37 | 26.6 | 1.73 | 1.40 |
Fujii | Setter | Japan M | 0.28 | 0.49 | 28.06 | 0.99 | 1.74 |
Arredondo | Setter | Cuba M | −0.37 | 0.48 | 27.58 | −1.34 | 1.74 |
Cavanna | Setter | Argentina M | 0.28 | 0.49 | 32.77 | 0.85 | 1.49 |
Blankenau | Setter | Canada M | −0.06 | 0.46 | 29.81 | −0.19 | 1.54 |
Rezende | Setter | Brazil M | 0.70 | 0.40 | 28.74 | 2.43 | 1.39 |
Peacock | Setter | Australia M | 0.41 | 0.40 | 26.92 | 1.54 | 1.50 |
Mao | Setter | China M | −0.23 | 0.49 | 27.94 | −0.83 | 1.76 |
Marouflakrani | Setter | Iran M | 0.55 | 0.43 | 28.8 | 1.91 | 1.50 |
D’Hulst | Setter | Belgium M | 0.32 | 0.45 | 28.15 | 1.14 | 1.59 |
Seganov | Setter | Bulgaria M | 0.03 | 0.44 | 27.28 | 0.11 | 1.60 |
Tervaportti | Setter | Finland M | 0.20 | 0.47 | 30.36 | 0.67 | 1.54 |
Slimene | Setter | Tunisia M | 0.58 | 0.45 | 26.59 | 2.18 | 1.71 |
Toniutti | Setter | France M | 0.52 | 0.41 | 28.62 | 1.83 | 1.45 |
Abdalla | Setter | Egypt M | 0.19 | 0.43 | 23.47 | 0.80 | 1.82 |
Perez | Setter | Puerto_Rico M | 0.45 | 0.48 | 27.56 | 1.63 | 1.74 |
Giannelli | Setter | Italy M | 0.47 | 0.37 | 25.44 | 1.86 | 1.46 |
Vincic | Setter | Slovenia M | 0.22 | 0.40 | 25.06 | 0.88 | 1.61 |
Haarlem | Setter | Netherlands M | −0.14 | 0.42 | 26.25 | −0.54 | 1.59 |
Jovovic | Setter | Serbia M | 0.02 | 0.38 | 26.87 | 0.08 | 1.41 |
Drzyzga | Setter | Poland M | −0.6 | 0.43 | 27.48 | −2.17 | 1.58 |
Butko | Setter | Russia M | −0.29 | 0.41 | 25.31 | −1.16 | 1.63 |
Burgos | Setter | Dominican_R M | 0.06 | 0.53 | 28.06 | 0.21 | 1.88 |
Awal | Setter | Cameroon M | 0.13 | 0.46 | 26.31 | 0.49 | 1.75 |
Performance of PAAPS and PP100 for the primary setter of each team entered in the 2018 Women’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Lloyd | Setter | USA W | 0.10 | 1.24 | 73.00 | 0.14 | 1.70 |
Kitipova | Setter | Bulgaria W | 1.89 | 1.19 | 65.82 | 2.87 | 1.81 |
Hanke | Setter | Germany W | 2.46 | 1.16 | 62.81 | 3.91 | 1.85 |
Malinov | Setter | Italy W | 1.26 | 0.97 | 61.95 | 2.04 | 1.57 |
Dijkema | Setter | Netherlands W | −0.50 | 1.08 | 63.57 | −0.79 | 1.70 |
Startseva | Setter | Russia W | 3.45 | 1.14 | 64.82 | 5.32 | 1.75 |
Ognienovic | Setter | Serbia W | 3.35 | 1.03 | 65.30 | 5.13 | 1.58 |
Ozbay | Setter | Turkey W | −1.55 | 1.19 | 60.30 | −2.58 | 1.98 |
Galiano | Setter | Argentina W | −0.89 | 1.32 | 54.00 | −1.65 | 2.45 |
Ratzke | Setter | Brazil W | −0.61 | 1.05 | 52.13 | −1.17 | 2.01 |
Ding | Setter | China W | 0.93 | 0.98 | 62.16 | 1.50 | 1.57 |
Tashiro | Setter | Japan W | 0.08 | 1.17 | 70.36 | 0.11 | 1.66 |
Akilova | Setter | Kazakhstan W | −0.14 | 1.33 | 51.27 | −0.27 | 2.58 |
Guedpard | Setter | Thailand W | 2.70 | 1.16 | 62.06 | 4.35 | 1.87 |
Cyr | Setter | Canada W | 0.26 | 1.30 | 55.18 | 0.47 | 2.36 |
Sabin | Setter | Cuba W | −0.67 | 1.33 | 50.47 | −1.33 | 2.64 |
Frica | Setter | Dominican_Rep W | 2.34 | 0.97 | 51.78 | 4.52 | 1.88 |
Sashiko | Setter | Mexico W | −0.52 | 1.12 | 53.07 | −0.99 | 2.12 |
Valentin | Setter | Puerto_Rico W | 3.15 | 1.34 | 69.48 | 4.53 | 1.93 |
Wairimu | Setter | Kenya W | 0.19 | 1.15 | 43.67 | 0.44 | 2.63 |
Lee | Setter | S. Korea W | 0.08 | 1.36 | 59.41 | 0.14 | 2.29 |
Koulla | Setter | Cameroon W | −2.40 | 1.24 | 48.12 | −5.00 | 2.58 |
Forde | Setter | Trinidad&Tobago W | 1.75 | 1.24 | 51.31 | 3.41 | 2.41 |
Yagubova | Setter | Azerbaijan W | −0.79 | 1.10 | 53.67 | −1.48 | 2.05 |
Performance of PAAPS and PP100 for the two primary middle blockers of each team entered in the 2018 Men’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Holt | Middle | USA M | 0.12 | 0.17 | 9.73 | 1.27 | 1.70 |
Smith | Middle | USA M | 0.10 | 0.13 | 7.12 | 1.39 | 1.77 |
Yamauchi | Middle | Japan M | 0.01 | 0.17 | 8.76 | 0.12 | 1.95 |
Fushimi | Middle | Japan M | −0.07 | 0.09 | 4.27 | −1.64 | 2.19 |
Arce | Middle | Cuba M | −0.05 | 0.21 | 10.71 | −0.51 | 1.95 |
Rodriguez | Middle | Cuba M | −0.07 | 0.14 | 6.89 | −1.07 | 2.07 |
Sole | Middle | Argentina M | 0.13 | 0.20 | 11.51 | 1.09 | 1.71 |
Loser | Middle | Argentina M | −0.28 | 0.17 | 8.33 | −3.38 | 2.05 |
Vigrass | Middle | Canada M | −0.01 | 0.17 | 9.46 | −0.06 | 1.79 |
Vandoorn | Middle | Canada M | −0.10 | 0.12 | 5.95 | −1.72 | 2.01 |
Saatkamp | Middle | Brazil M | −0.06 | 0.18 | 10.43 | −0.53 | 1.71 |
Souza | Middle | Brazil M | −0.03 | 0.12 | 6.22 | −0.43 | 1.87 |
Mote | Middle | Australia M | 0.03 | 0.18 | 10.17 | 0.34 | 1.76 |
Graham | Middle | Australia M | 0.11 | 0.13 | 7.32 | 1.51 | 1.79 |
Chen | Middle | China M | 0.03 | 0.21 | 10.81 | 0.32 | 1.91 |
Rao | Middle | China M | −0.02 | 0.18 | 8.75 | −0.23 | 2.02 |
Shafiei | Middle | Iran M | −0.09 | 0.19 | 10.46 | −0.85 | 1.81 |
Eraghi | Middle | Iran M | 0.01 | 0.12 | 6.68 | 0.13 | 1.87 |
Voorde | Middle | Belgium M | 0.07 | 0.18 | 10.12 | 0.69 | 1.82 |
Verhees | Middle | Belgium M | −0.14 | 0.18 | 9.57 | −1.46 | 1.93 |
Yosifov | Middle | Bulgaria M | −0.21 | 0.20 | 10.16 | −2.02 | 1.94 |
Gotsev | Middle | Bulgaria M | 0.02 | 0.13 | 6.89 | 0.27 | 1.95 |
Sinkkonen | Middle | Finland M | 0.10 | 0.17 | 9.82 | 1.04 | 1.75 |
Siirila | Middle | Finland M | −0.02 | 0.11 | 5.63 | −0.43 | 1.95 |
Miladi | Middle | Tunisia M | 0.01 | 0.18 | 8.68 | 0.14 | 2.04 |
Agrebi | Middle | Tunisia M | −0.09 | 0.13 | 5.96 | −1.57 | 2.21 |
Le Goff | Middle | France M | 0.01 | 0.17 | 9.58 | 0.12 | 1.79 |
Chinenyeze | Middle | France M | −0.03 | 0.11 | 5.7 | −0.51 | 1.98 |
Abou | Middle | Egypt M | 0.11 | 0.15 | 7.74 | 1.36 | 1.97 |
Masoud | Middle | Egypt M | 0.05 | 0.11 | 5.4 | 0.92 | 2.04 |
Colon | Middle | Puerto_Rico M | −0.13 | 0.20 | 9.49 | −1.40 | 2.11 |
Rodriguez | Middle | Puerto_Rico M | 0.00 | 0.15 | 7.36 | 0.00 | 2.06 |
Anzani | Middle | Italy M | 0.01 | 0.16 | 9.41 | 0.11 | 1.74 |
Mazzone | Middle | Italy M | 0.26 | 0.13 | 7.93 | 3.29 | 1.7 |
Pajenk | Middle | Slovenia M | −0.15 | 0.17 | 8.76 | −1.74 | 1.9 |
Kozamernik | Middle | Slovenia M | 0.10 | 0.15 | 8.30 | 1.15 | 1.78 |
Parkinson | Middle | Netherlands M | −0.19 | 0.21 | 10.61 | −1.83 | 1.99 |
Diefenbach | Middle | Netherlands M | 0.16 | 0.14 | 7.53 | 2.19 | 1.84 |
Lisinac | Middle | Serbia M | 0.07 | 0.16 | 10.18 | 0.72 | 1.61 |
Podrascanin | Middle | Serbia M | 0.07 | 0.12 | 6.82 | 1.02 | 1.74 |
Kochanowski | Middle | Poland M | 0.04 | 0.17 | 9.98 | 0.36 | 1.73 |
Nowakowski | Middle | Poland M | 0.06 | 0.17 | 9.73 | 0.66 | 1.76 |
Muserskiy | Middle | Russia M | 0.23 | 0.17 | 10.03 | 2.29 | 1.67 |
Kurkaev | Middle | Russia M | −0.02 | 0.17 | 9.41 | −0.19 | 1.83 |
Romero | Middle | Dominican_R M | −0.09 | 0.17 | 7.97 | −1.15 | 2.16 |
Paulino | Middle | Dominican_R M | 0.00 | 0.16 | 7.76 | 0.04 | 2.06 |
Dolegombai | Middle | Cameroon M | −0.05 | 0.20 | 10.34 | −0.52 | 1.98 |
Engala | Middle | Cameroon M | −0.07 | 0.13 | 6.17 | −1.07 | 2.13 |
Performance of PAAPS and PP100 for the two primary middle blockers of each team entered in the 2018 Women’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Akinradewo | Middle | USA W | 0.53 | 0.46 | 23.6 | 2.26 | 1.96 |
Adams | Middle | USA W | 0.63 | 0.35 | 15.97 | 3.92 | 2.18 |
Dimitrova | Middle | Bulgaria W | 1.77 | 0.50 | 25.68 | 6.90 | 1.93 |
Ruseva | Middle | Bulgaria W | 0.36 | 0.46 | 21.12 | 1.71 | 2.15 |
Grunding | Middle | Germany W | 0.10 | 0.48 | 20.07 | 0.52 | 2.41 |
Vanjak | Middle | Germany W | −0.08 | 0.43 | 17.31 | −0.44 | 2.49 |
Danesi | Middle | Italy W | 0.03 | 0.40 | 21.33 | 0.15 | 1.88 |
Chirichella | Middle | Italy W | 0.16 | 0.34 | 17.28 | 0.90 | 1.95 |
Belien | Middle | Netherlands W | −0.40 | 0.41 | 20.5 | −1.96 | 2.00 |
Lohuis | Middle | Netherlands W | 0.00 | 0.30 | 12.97 | 0.04 | 2.30 |
Koroleva | Middle | Russia W | 0.30 | 0.48 | 21.9 | 1.36 | 2.17 |
Fetisova | Middle | Russia W | 0.85 | 0.45 | 20.59 | 4.13 | 2.20 |
Rasic | Middle | Serbia W | 1.05 | 0.42 | 22.31 | 4.71 | 1.89 |
Veljkovic | Middle | Serbia W | 0.72 | 0.33 | 15.56 | 4.64 | 2.10 |
Dundar | Middle | Turkey W | 1.00 | 0.50 | 24.12 | 4.14 | 2.07 |
Gunes | Middle | Turkey W | 0.90 | 0.46 | 21.38 | 4.22 | 2.16 |
Sosa | Middle | Argentina W | 0.75 | 0.56 | 20.43 | 3.67 | 2.74 |
Lazcano | Middle | Argentina W | −0.23 | 0.54 | 18.81 | −1.24 | 2.87 |
Correa | Middle | Brazil W | 0.22 | 0.45 | 19.62 | 1.12 | 2.28 |
Da Silva | Middle | Brazil W | 0.19 | 0.30 | 11.04 | 1.74 | 2.71 |
Yuan | Middle | China W | 1.52 | 0.42 | 24.00 | 6.33 | 1.76 |
Yan | Middle | China W | 1.77 | 0.38 | 21.35 | 8.27 | 1.80 |
Shinomiya | Middle | Japan W | 0.00 | 0.45 | 22.23 | 0.02 | 2.04 |
Okumura | Middle | Japan W | −0.70 | 0.47 | 22.04 | −3.16 | 2.15 |
Petrenko | Middle | Kazakhstan W | 0.30 | 0.54 | 18.97 | 1.58 | 2.86 |
Safronova | Middle | Kazakhstan W | 0.06 | 0.33 | 10.07 | 0.58 | 3.26 |
Thinkaow | Middle | Thailand W | 0.99 | 0.43 | 20.51 | 4.81 | 2.08 |
Nuekjang | Middle | Thailand W | 0.92 | 0.38 | 17.56 | 5.22 | 2.14 |
Maglio | Middle | Canada W | 0.73 | 0.49 | 18.21 | 3.99 | 2.70 |
Cross | Middle | Canada W | −0.10 | 0.51 | 17.42 | −0.57 | 2.95 |
Aguiliera Carbajal | Middle | Cuba W | 0.19 | 0.48 | 17.03 | 1.14 | 2.81 |
Suarez | Middle | Cuba W | −0.23 | 0.41 | 13.72 | −1.71 | 2.97 |
Mejia | Middle | Dominican_Rep W | 1.04 | 0.45 | 19.41 | 5.36 | 2.33 |
Martinez | Middle | Dominican_Rep W | 0.36 | 0.36 | 14.35 | 2.48 | 2.52 |
Valle | Middle | Mexico W | −0.44 | 0.40 | 14.25 | −3.06 | 2.83 |
Moreno Hernandez | Middle | Mexico W | −0.76 | 0.37 | 12.55 | −6.02 | 2.96 |
Sofia Jusino | Middle | Puerto_Rico W | −0.91 | 0.51 | 18.66 | −4.85 | 2.71 |
Ortiz | Middle | Puerto_Rico W | 0.03 | 0.45 | 16.82 | 0.19 | 2.68 |
Mukuvilani | Middle | Kenya W | −0.58 | 0.47 | 14.7 | −3.93 | 3.22 |
Atuka | Middle | Kenya W | −0.02 | 0.25 | 7.22 | −0.23 | 3.48 |
Kim | Middle | S. Korea W | −0.14 | 0.50 | 17.50 | −0.83 | 2.85 |
Lee | Middle | S. Korea W | 0.55 | 0.30 | 9.70 | 5.72 | 3.07 |
Mogoung | Middle | Cameroon W | 0.51 | 0.48 | 16.53 | 3.09 | 2.93 |
Aboa Mbeza | Middle | Cameroon W | −0.24 | 0.45 | 13.95 | −1.75 | 3.22 |
Jack | Middle | Trinidad&Tobago W | 0.98 | 0.37 | 14.44 | 6.81 | 2.59 |
Ross | Middle | Trinidad&Tobago W | −0.40 | 0.24 | 6.82 | −5.79 | 3.47 |
Hasanova | Middle | Azerbaijan W | 0.49 | 0.40 | 17.02 | 2.89 | 2.33 |
Imanova | Middle | Azerbaijan W | −0.52 | 0.36 | 13.47 | −3.84 | 2.68 |
Performance of PAAPS and PP100 for the two primary outside hitters of each team entered in the 2018 Men’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Sander | Outside | USA M | 0.09 | 0.27 | 18.38 | 0.49 | 1.47 |
Russell | Outside | USA M | −0.15 | 0.28 | 18.35 | −0.84 | 1.52 |
Fukuzawa | Outside | Japan M | 0.24 | 0.33 | 18.92 | 1.26 | 1.76 |
Ishikawa | Outside | Japan M | 0.08 | 0.31 | 17.47 | 0.47 | 1.78 |
Castro | Outside | Cuba M | −0.20 | 0.35 | 19.18 | −1.03 | 1.80 |
Hernandez | Outside | Cuba M | 0.14 | 0.23 | 13.15 | 1.05 | 1.76 |
Poglajen | Outside | Argentina M | 0.03 | 0.33 | 21.27 | 0.15 | 1.57 |
Conte | Outside | Argentina M | 0.17 | 0.25 | 16.08 | 1.03 | 1.55 |
Hoag | Outside | Canada M | −0.06 | 0.29 | 18.97 | −0.29 | 1.55 |
Perrin | Outside | Canada M | 0.53 | 0.25 | 17.76 | 2.97 | 1.43 |
Souza | Outside | Brazil M | 0.52 | 0.26 | 18.62 | 2.81 | 1.37 |
Fonteles | Outside | Brazil M | 0.12 | 0.22 | 14.33 | 0.85 | 1.54 |
Sanderson | Outside | Australia M | −0.14 | 0.34 | 19.01 | −0.76 | 1.77 |
Staples | Outside | Australia M | −0.18 | 0.22 | 12.2 | −1.45 | 1.83 |
Liu | Outside | China M | 0.16 | 0.32 | 18.86 | 0.86 | 1.70 |
Ji | Outside | China M | −0.19 | 0.23 | 11.49 | −1.68 | 1.99 |
Ghara H. | Outside | Iran M | 0.15 | 0.30 | 19.01 | 0.81 | 1.56 |
Manavinezhad | Outside | Iran M | 0.08 | 0.18 | 11.05 | 0.71 | 1.67 |
Deroo | Outside | Belgium M | −0.05 | 0.30 | 18.63 | −0.26 | 1.61 |
Rousseaux | Outside | Belgium M | 0.03 | 0.19 | 10.63 | 0.25 | 1.74 |
Skrimov | Outside | Bulgaria M | 0.10 | 0.32 | 19.69 | 0.53 | 1.63 |
Penchev | Outside | Bulgaria M | 0.24 | 0.31 | 18.41 | 1.33 | 1.71 |
Krastins | Outside | Finland M | −0.50 | 0.34 | 19.75 | −2.54 | 1.74 |
Suihkonen | Outside | Finland M | −0.12 | 0.28 | 15.92 | −0.72 | 1.73 |
Hmissi | Outside | Tunisia M | −0.34 | 0.34 | 16.82 | −1.99 | 2.00 |
Miladi | Outside | Tunisia M | −0.29 | 0.31 | 16.04 | −1.81 | 1.94 |
Ngapeth | Outside | France M | 0.10 | 0.29 | 19.69 | 0.52 | 1.50 |
Tillie | Outside | France M | 0.04 | 0.22 | 12.91 | 0.34 | 1.67 |
Shafik | Outside | Egypt M | 0.06 | 0.27 | 15.09 | 0.40 | 1.81 |
Hassan | Outside | Egypt M | −0.03 | 0.17 | 8.08 | −0.34 | 2.06 |
Eddie | Outside | Puerto_Rico M | 0.07 | 0.36 | 19.55 | 0.36 | 1.83 |
Guzman | Outside | Puerto_Rico M | −0.08 | 0.28 | 14.51 | −0.53 | 1.96 |
Juantorena | Outside | Italy M | 0.12 | 0.27 | 17.71 | 0.66 | 1.55 |
Lanza | Outside | Italy M | −0.38 | 0.21 | 11.63 | −3.28 | 1.83 |
Urnaut | Outside | Slovenia M | −0.43 | 0.30 | 18.13 | −2.37 | 1.67 |
Cebulj | Outside | Slovenia M | 0.12 | 0.21 | 13.22 | 0.87 | 1.59 |
Horst | Outside | Netherlands M | 0.13 | 0.32 | 19.48 | 0.69 | 1.62 |
Jorna | Outside | Netherlands M | −0.33 | 0.32 | 16.59 | −1.96 | 1.90 |
Ivovic | Outside | Serbia M | 0.51 | 0.27 | 19.37 | 2.66 | 1.40 |
Kovacevic | Outside | Serbia M | 0.32 | 0.25 | 17.34 | 1.85 | 1.44 |
Szalpuk | Outside | Poland M | −0.14 | 0.31 | 19.70 | −0.69 | 1.56 |
Kubiak | Outside | Poland M | 0.31 | 0.25 | 17.48 | 1.77 | 1.41 |
Kliuka | Outside | Russia M | 0.21 | 0.29 | 19.46 | 1.10 | 1.51 |
Volkov | Outside | Russia M | 0.08 | 0.30 | 19.42 | 0.43 | 1.55 |
Lopez | Outside | Dominican_R M | 0.32 | 0.32 | 18.19 | 1.77 | 1.76 |
Cruz | Outside | Dominican_R M | −0.07 | 0.13 | 6.54 | −1.03 | 2.06 |
Hile | Outside | Cameroon M | 0.08 | 0.35 | 18.94 | 0.41 | 1.85 |
Engohe | Outside | Cameroon M | −0.04 | 0.27 | 13.73 | −0.27 | 1.97 |
Performance of PAAPS and PP100 for the two primary outside hitters of each team entered in the 2018 Women’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Larson | Outside | USA W | −1.73 | 0.82 | 50.30 | −3.43 | 1.63 |
Hill | Outside | USA W | −0.31 | 0.69 | 40.89 | −0.75 | 1.68 |
Dimitrova | Outside | Bulgaria W | 0.06 | 0.84 | 46.14 | 0.14 | 1.82 |
Karakasheva | Outside | Bulgaria W | −2.17 | 0.81 | 40.47 | −5.36 | 2.01 |
Geerties | Outside | Germany W | 0.19 | 0.84 | 44.69 | 0.42 | 1.88 |
Brinker-Fromm | Outside | Germany W | 0.92 | 0.59 | 31.16 | 2.96 | 1.88 |
Bosetti | Outside | Italy W | −0.12 | 0.70 | 45.44 | −0.26 | 1.55 |
Sylla | Outside | Italy W | 0.61 | 0.58 | 36.97 | 1.66 | 1.56 |
Balkestein-Grothues | Outside | Netherlands W | −1.57 | 0.79 | 45.07 | −3.48 | 1.75 |
Buijs | Outside | Netherlands W | −0.55 | 0.70 | 42.86 | −1.29 | 1.64 |
Voronkova | Outside | Russia W | −0.22 | 0.80 | 45.56 | −0.49 | 1.75 |
Parubets | Outside | Russia W | 0.83 | 0.80 | 44.64 | 1.87 | 1.78 |
Mihajlovic | Outside | Serbia W | −0.20 | 0.78 | 45.97 | −0.45 | 1.71 |
Busa | Outside | Serbia W | −0.57 | 0.65 | 37.94 | −1.49 | 1.72 |
Ismailoglu | Outside | Turkey W | 1.31 | 0.81 | 42.93 | 3.05 | 1.89 |
Baladin | Outside | Turkey W | −1.50 | 0.63 | 26.99 | −5.55 | 2.33 |
Fernandez | Outside | Argentina W | −0.87 | 0.99 | 39.93 | −2.18 | 2.49 |
Rodriguez | Outside | Argentina W | 0.62 | 0.94 | 39.52 | 1.58 | 2.39 |
Guimaraes | Outside | Brazil W | 0.03 | 0.79 | 40.52 | 0.07 | 1.94 |
Rodrigues | Outside | Brazil W | 0.73 | 0.68 | 34.67 | 2.12 | 1.96 |
Zhu | Outside | China W | −0.38 | 0.73 | 46.54 | −0.81 | 1.56 |
Zhang | Outside | China W | 0.17 | 0.47 | 26.11 | 0.64 | 1.78 |
Koga | Outside | Japan W | −1.50 | 0.82 | 47.91 | −3.12 | 1.71 |
Ishii | Outside | Japan W | 0.20 | 0.66 | 37.86 | 0.54 | 1.75 |
Anarkulova | Outside | Kazakhstan W | 0.28 | 1.07 | 38.07 | 0.73 | 2.81 |
Beresneva | Outside | Kazakhstan W | 0.44 | 0.74 | 26.18 | 1.66 | 2.83 |
Apinyapong | Outside | Thailand W | 0.84 | 0.77 | 43.13 | 1.94 | 1.78 |
Sittirak | Outside | Thailand W | −1.04 | 0.75 | 39.38 | −2.64 | 1.91 |
Bailey | Outside | Canada W | −1.28 | 1.00 | 40.47 | −3.16 | 2.47 |
Gray | Outside | Canada W | 0.04 | 0.73 | 29.15 | 0.13 | 2.5 |
Case Montalvo | Outside | Cuba W | 0.51 | 0.89 | 36.53 | 1.41 | 2.43 |
Perez | Outside | Cuba W | 0.17 | 0.76 | 30.76 | 0.57 | 2.46 |
Pena | Outside | Dominican_Rep W | −1.44 | 0.87 | 41.12 | −3.51 | 2.12 |
Martinez | Outside | Dominican_Rep W | 0.55 | 0.63 | 27.82 | 1.99 | 2.25 |
Bricio | Outside | Mexico W | 1.12 | 0.70 | 36.18 | 3.09 | 1.93 |
Parra Quintero | Outside | Mexico W | 0.59 | 0.65 | 31.31 | 1.87 | 2.06 |
Enright | Outside | Puerto_Rico W | −2.44 | 0.86 | 43.43 | −5.61 | 1.97 |
Santana | Outside | Puerto_Rico W | 0.33 | 0.81 | 43.19 | 0.76 | 1.87 |
Murambi | Outside | Kenya W | 1.15 | 0.87 | 33.2 | 3.47 | 2.62 |
Moim | Outside | Kenya W | 0.75 | 0.89 | 32.84 | 2.30 | 2.71 |
Kim | Outside | S. Korea W | −0.36 | 0.88 | 38.74 | −0.92 | 2.28 |
Lee | Outside | S. Korea W | −1.59 | 0.63 | 22.84 | −6.98 | 2.78 |
Nana | Outside | Cameroon W | 0.90 | 0.88 | 34.41 | 2.60 | 2.55 |
Fawziya | Outside | Cameroon W | −0.69 | 0.75 | 26.93 | −2.55 | 2.78 |
Ramdin | Outside | Trinidad&Tobago W | −0.74 | 0.91 | 35.62 | −2.09 | 2.55 |
Channon | Outside | Trinidad&Tobago W | −0.30 | 0.87 | 35.30 | −0.85 | 2.46 |
Bayramova | Outside | Azerbaijan W | −0.29 | 0.79 | 37.97 | −0.76 | 2.09 |
Samadova | Outside | Azerbaijan W | −1.47 | 0.58 | 24.66 | −5.97 | 2.36 |
Performance of PAAPS and PP100 for the primary opposite of each team entered in the 2018 Men’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Anderson | Opposite | USA M | 0.08 | 0.23 | 15.09 | 0.52 | 1.52 |
Nishida | Opposite | Japan M | 0.08 | 0.29 | 15.00 | 0.52 | 1.9 |
Gutierrez Miguel | Opposite | Cuba M | −0.40 | 0.30 | 15.63 | −2.55 | 1.91 |
Gonzalez | Opposite | Argentina M | −0.10 | 0.29 | 15.60 | −0.64 | 1.86 |
Vernon-Evans | Opposite | Canada M | 0.04 | 0.22 | 12.66 | 0.35 | 1.75 |
Souza | Opposite | Brazil M | −0.09 | 0.25 | 15.14 | −0.57 | 1.63 |
Williams | Opposite | Australia M | 0.48 | 0.26 | 16.16 | 3.00 | 1.62 |
Jiang | Opposite | China M | 0.17 | 0.31 | 17.72 | 0.96 | 1.75 |
Ghafour | Opposite | Iran M | −0.18 | 0.28 | 15.58 | −1.16 | 1.77 |
Dries | Opposite | Belgium M | 0.06 | 0.23 | 13.6 | 0.44 | 1.73 |
Uchikov | Opposite | Bulgaria M | −0.05 | 0.25 | 13.84 | −0.39 | 1.8 |
Sivula | Opposite | Finland M | −0.35 | 0.30 | 16.16 | −2.18 | 1.85 |
Boungui | Opposite | Tunisia M | 0.19 | 0.30 | 16.06 | 1.21 | 1.89 |
Boyer | Opposite | France M | −0.06 | 0.25 | 14.69 | −0.41 | 1.69 |
Abdelhay | Opposite | Egypt M | 0.02 | 0.26 | 13.18 | 0.11 | 1.94 |
Torres | Opposite | Puerto_Rico M | 0.18 | 0.29 | 16.25 | 1.09 | 1.79 |
Zaytsev | Opposite | Italy M | 0.33 | 0.21 | 13.70 | 2.41 | 1.52 |
Gasparini | Opposite | Slovenia M | 0.02 | 0.22 | 12.92 | 0.19 | 1.72 |
Abdel-Aziz | Opposite | Netherlands M | −0.26 | 0.30 | 16.66 | −1.55 | 1.78 |
Atanasijevic | Opposite | Serbia M | 0.11 | 0.25 | 15.78 | 0.69 | 1.59 |
Kurek | Opposite | Poland M | 0.22 | 0.23 | 15.25 | 1.44 | 1.54 |
Mikhaylov | Opposite | Russia M | −0.02 | 0.24 | 14.78 | −0.13 | 1.66 |
Santana | Opposite | Dominican_R M | 0.02 | 0.27 | 13.50 | 0.18 | 2.00 |
Feughouo | Opposite | Cameroon M | 0.08 | 0.31 | 16.25 | 0.50 | 1.93 |
Performance of PAAPS and PP100 for the primary opposite of each team entered in the 2018 Women’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Murphy | Opposite | USA W | −1.03 | 0.73 | 34.91 | −2.94 | 2.09 |
Paskova | Opposite | Bulgaria W | −0.27 | 0.64 | 30.19 | −0.90 | 2.12 |
Lippmann | Opposite | Germany W | 0.76 | 0.74 | 38.07 | 2.00 | 1.95 |
Egonu | Opposite | Italy W | 1.12 | 0.63 | 38.77 | 2.90 | 1.62 |
Sloetjes | Opposite | Netherlands W | 2.28 | 0.66 | 40.06 | 5.70 | 1.64 |
Goncharova | Opposite | Russia W | 2.17 | 0.72 | 34.22 | 6.33 | 2.10 |
Boskovic | Opposite | Serbia W | 1.29 | 0.66 | 37.32 | 3.46 | 1.76 |
Boz | Opposite | Turkey W | 0.16 | 0.68 | 31.13 | 0.52 | 2.17 |
Fresco | Opposite | Argentina W | −0.52 | 0.73 | 25.53 | −2.04 | 2.86 |
Caixeta | Opposite | Brazil W | 0.41 | 0.65 | 32.84 | 1.26 | 1.97 |
Gong | Opposite | China W | 0.70 | 0.64 | 38.05 | 1.84 | 1.69 |
Shinnabe | Opposite | Japan W | −0.14 | 0.77 | 39.62 | −0.35 | 1.93 |
Zhdanova | Opposite | Kazakhstan W | −0.98 | 0.82 | 25.8 | −3.79 | 3.19 |
Kanthong | Opposite | Thailand W | −0.75 | 0.81 | 40.16 | −1.87 | 2.02 |
Van Ryk | Opposite | Canada W | −0.56 | 0.76 | 29.29 | −1.90 | 2.58 |
Sabin | Opposite | Cuba W | 0.43 | 0.87 | 29.18 | 1.49 | 2.97 |
Isabel | Opposite | Dominican_Rep W | −0.37 | 0.73 | 32.13 | −1.15 | 2.26 |
Rangel | Opposite | Mexico W | 1.45 | 0.63 | 31.53 | 4.60 | 2.01 |
Ocasio | Opposite | Puerto_Rico W | 0.97 | 0.6 | 29.59 | 3.27 | 2.04 |
Makuto | Opposite | Kenya W | −0.23 | 0.67 | 20.67 | −1.13 | 3.26 |
Park | Opposite | S. Korea W | 0.57 | 0.89 | 32.9 | 1.74 | 2.71 |
Bassoko | Opposite | Cameroon W | 0.59 | 0.79 | 29.19 | 2.01 | 2.72 |
Esdelle | Opposite | Trinidad&Tobago W | −1.02 | 0.73 | 27.06 | −3.77 | 2.69 |
Rahimova | Opposite | Azerbaijan W | 1.98 | 0.60 | 28.8 | 6.89 | 2.10 |
Performance of PAAPS and PP100 for the primary libero of each team entered in the 2018 Men’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Shoji | Libero | USA M | −0.06 | 0.15 | 8.86 | −0.72 | 1.69 |
Tsuiki | Libero | Japan M | 0.11 | 0.22 | 11.18 | 1.01 | 1.97 |
Alvarez | Libero | Cuba M | 0.02 | 0.16 | 8.63 | 0.24 | 1.90 |
Gonzalez | Libero | Argentina M | 0.25 | 0.16 | 9.69 | 2.62 | 1.65 |
Marshall | Libero | Canada M | −0.45 | 0.22 | 10.61 | −4.26 | 2.11 |
Hoss | Libero | Brazil M | 0.21 | 0.14 | 8.97 | 2.37 | 1.58 |
Perry | Libero | Australia M | 0.04 | 0.15 | 8.91 | 0.49 | 1.72 |
Tong | Libero | China M | 0.08 | 0.16 | 8.50 | 0.89 | 1.89 |
Marandi | Libero | Iran M | −0.16 | 0.22 | 11.20 | −1.43 | 1.98 |
Stuer | Libero | Belgium M | 0.09 | 0.18 | 9.83 | 0.92 | 1.83 |
Salparov | Libero | Bulgaria M | −0.02 | 0.18 | 9.89 | −0.21 | 1.78 |
Kerminen | Libero | Finland M | 0.13 | 0.17 | 9.70 | 1.33 | 1.73 |
Taouerghi | Libero | Tunisia M | −0.08 | 0.20 | 10.18 | −0.75 | 1.97 |
Grebennikov | Libero | France M | 0.10 | 0.16 | 9.47 | 1.03 | 1.71 |
Abdelaal | Libero | Egypt M | −0.09 | 0.21 | 9.65 | −0.94 | 2.19 |
Del Valle | Libero | Puerto_Rico M | 0.07 | 0.23 | 11.65 | 0.57 | 1.94 |
Colaci | Libero | Italy M | 0.11 | 0.13 | 7.60 | 1.42 | 1.75 |
Kovacic | Libero | Slovenia M | 0.01 | 0.15 | 8.33 | 0.09 | 1.77 |
Sparidans | Libero | Netherlands M | 0.21 | 0.19 | 11.18 | 1.90 | 1.66 |
Rosic | Libero | Serbia M | 0.03 | 0.15 | 8.4 | 0.36 | 1.74 |
Zatorski | Libero | Poland M | 0.22 | 0.15 | 9.69 | 2.29 | 1.54 |
Verbov | Libero | Russia M | −0.34 | 0.18 | 9.36 | −3.62 | 1.92 |
Mieses | Libero | Dominican_R M | −0.29 | 0.21 | 9.69 | −3.00 | 2.16 |
Fossi | Libero | Cameroon M | 0.05 | 0.16 | 8.31 | 0.56 | 1.93 |
Performance of PAAPS and PP100 for the primary libero of each team entered in the 2018 Women’s World Championship Volleyball tournament.
Name | Position | Team | Mean | SD | TPS | Mean | SD |
---|---|---|---|---|---|---|---|
PAAPS | PAAPS | PP100 | PP100 | ||||
Robinson | Libero | USA W | 0.03 | 0.47 | 25.90 | 0.13 | 1.83 |
Todorova | Libero | Bulgaria W | −0.64 | 0.59 | 28.04 | −2.27 | 2.10 |
Durr | Libero | Germany W | 0.13 | 0.52 | 25.20 | 0.52 | 2.08 |
De Gennaro | Libero | Italy W | −0.37 | 0.45 | 25.27 | −1.45 | 1.79 |
Knip | Libero | Netherlands W | 0.19 | 0.45 | 22.31 | 0.83 | 2.01 |
Galkina | Libero | Russia W | −1.08 | 0.58 | 25.96 | −4.15 | 2.23 |
Popovic | Libero | Serbia W | 0.17 | 0.39 | 19.93 | 0.87 | 1.95 |
Sebnem Akoz | Libero | Turkey W | 1.21 | 0.45 | 21.30 | 5.68 | 2.13 |
Martinez Franchi | Libero | Argentina W | 0.43 | 0.63 | 23.13 | 1.85 | 2.72 |
Pinto | Libero | Brazil W | 0.00 | 0.43 | 19.7 | 0.02 | 2.17 |
Wang | Libero | China W | 0.82 | 0.40 | 21.53 | 3.8 | 1.88 |
Kobata | Libero | Japan W | 1.27 | 0.51 | 26.55 | 4.79 | 1.93 |
Fendrikova | Libero | Kazakhstan W | −1.17 | 0.65 | 21.53 | −5.44 | 3.03 |
Pannoy | Libero | Thailand W | −0.25 | 0.54 | 25.11 | −1.01 | 2.17 |
Niles | Libero | Canada W | 0.25 | 0.53 | 19.88 | 1.24 | 2.64 |
Tamayo | Libero | Cuba W | −0.40 | 0.51 | 17.59 | −2.28 | 2.89 |
Castillo | Libero | Dominican_Rep W | −0.13 | 0.56 | 25.07 | −0.51 | 2.22 |
Lopez Robles | Libero | Mexico W | 0.53 | 0.46 | 20.23 | 2.63 | 2.26 |
Venegas | Libero | Puerto_Rico W | 0.68 | 0.49 | 23.55 | 2.90 | 2.10 |
Wanyama | Libero | Kenya W | −0.48 | 0.62 | 19.47 | −2.47 | 3.20 |
Kim | Libero | S. Korea W | 0.18 | 0.62 | 24.41 | 0.74 | 2.52 |
Ntame | Libero | Cameroon W | 0.49 | 0.60 | 23.06 | 2.14 | 2.60 |
Olton | Libero | Trinidad&Tobago W | 0.27 | 0.59 | 22.12 | 1.21 | 2.68 |
Karimova | Libero | Azerbaijan W | −0.3 | 0.50 | 22.40 | −1.32 | 2.24 |
References
Baumer, B. S., S. T. Jensen, and G. J. Matthews. 2015. “Openwar: An Open Source System for Evaluating Overall Player Performance in Major League Baseball.” Journal of Quantitative Analysis in Sports 11 (2): 69–84. https://doi.org/10.1515/jqas-2014-0098.Search in Google Scholar
Carruth, M., and S. Jensen. 2007. “Evaluating Throwing Ability in Baseball.” Journal of Quantitative Analysis in Sports 3 (3). https://doi.org/10.2202/1559-0410.1079.Search in Google Scholar
de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and R. Bodik. 2017. “Programming with Models: Writing Statistical Algorithms for General Model Structures with Nimble.” Journal of Computational & Graphical Statistics 26: 403–13. https://doi.org/10.1080/10618600.2016.1172487.Search in Google Scholar
Drikos, S., I. Ntzoufras, and N. Apostolidis. 2019. “Bayesian Analysis of Skills Importance in World Champions Men’s Volleyball across Ages.” International Journal of Computer Science in Sport 18 (1): 24–44. https://doi.org/10.2478/ijcss-2019-0002.Search in Google Scholar
Egidi, L., and J. Gabry. 2018. “Bayesian Hierarchical Models for Predicting Individual Performance in Soccer.” Journal of Quantitative Analysis in Sports 14 (3): 143–57. https://doi.org/10.1515/jqas-2017-0066.Search in Google Scholar
Egidi, L., and I. Ntzoufras. 2020. “A Bayesian Quest for Finding a Unified Model for Predicting Volleyball Games.” Applied Statistics (JRSS C) 69 (5): 1307–36. https://doi.org/10.1111/rssc.12436.Search in Google Scholar
Fellingham, G., B. Collings, and C. McGown. 1994. “Developing an Optimal Scoring System with a Special Emphasis on Volleyball.” Research Quarterly for Exercise & Sport 65 (3): 237–43. https://doi.org/10.1080/02701367.1994.10607624.Search in Google Scholar
Fellingham, G. W., and J. D. Fisher. 2018. “Predicting Home Run Performance in Major League Baseball Using a Bayesian Semiparametric Model.” The American Statistician 72: 253–64. https://doi.org/10.1080/00031305.2017.1401959.Search in Google Scholar
Ferrante, M., and G. Fonseca. 2014. “On the Winning Probabilities and Mean Durations of Volleyball.” Journal of Quantitative Analysis in Sports 10 (2): 91–8. https://doi.org/10.1515/jqas-2013-0098.Search in Google Scholar
Florence, L. W., G. W. Fellingham, P. R. Vehrs, and N. P. Mortensen. 2008. “Skill Evaluation in Women’s Volleyball.” Journal of Quantitative Analysis in Sports 4 (2). https://doi.org/10.2202/1559-0410.1105.Search in Google Scholar
Gabrio, A. 2021. “Bayesian Hierarchical Models for Prediction of Volleyball Games.” Journal of Applied Statistics 48 (2): 301–21. https://doi.org/10.1080/02664763.2020.1723506.Search in Google Scholar
Gelman, A., and D. B. Rubin. 1992. “Inferences from Iterative Simulation Using Multiple Sequences.” Statistical Science 7: 457–511. https://doi.org/10.1214/ss/1177011136.Search in Google Scholar
Geweke, J. 1992. “Evaluating the Accuracy of Sampling-Based Approaches to the Calculations of Posterior Moments.” Bayesian Statistics 4: 641–9.10.21034/sr.148Search in Google Scholar
Jensen, S. T., K. E. Shirley, and A. J. Wyner. 2009. “Bayesball: A Bayesian Hierarchical Model for Evaluating Fielding in Major League Baseball.” Annals of Applied Statistics 3 (2): 491–520. https://doi.org/10.1214/08-aoas228.Search in Google Scholar
Lewis, S. M., and A. E. Raftery. 1992. “One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo.” Statistical Science 7: 493–7.10.1214/ss/1177011143Search in Google Scholar
Mendes, F., J. Nascimento, E. Souza, C. Collet, J. Milistetd, and H. Carvalho. 2018. “Retrospective Analysis of Accumulated Structured Practice: A Bayesian Multilevel Analysis of Elite Brazilian Volleyball Players.” High Ability Studies 29 (2): 255–69. https://doi.org/10.1080/13598139.2018.1507901.Search in Google Scholar
Miskin, M., G. W. Fellingham, and L. W. Florence. 2010. “Skill Importance in Women’s Volleyball.” Journal of Quantitative Analysis in Sports 6 (2). https://doi.org/10.2202/1559-0410.1234.Search in Google Scholar
Patsiaouras, A., K. Charitonidis, A. Moustakidis, and D. Kokaridas. 2009. “Comparison of Technical Skills Effectiveness of Men’s National Volleyball Teams.” International Journal of Performance Analysis in Sport 9 (1): 1–7.10.1080/24748668.2009.11868460Search in Google Scholar
Piette, J., A. Braunstein, B. B. McShane, and S. T. Jensen. 2010. “A Point-Mass Mixture Random Effects Model for Pitching Metrics.” Journal of Quantitative Analysis in Sports 6 (3). https://doi.org/10.2202/1559-0410.1237.Search in Google Scholar
Plummer, M. 2006. “Coda: Convergence Diagnosis and Output Analysis for Mcmc.” R News 6 (1): 7–11.Search in Google Scholar
R Core Team 2020. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Search in Google Scholar
Silva, M., D. Lacerda, and P. V. Joao. 2014. “Game-related Volleyball Skills that Influence Victory.” Journal of Human Kinetics 41: 173–9. https://doi.org/10.2478/hukin-2014-0045.Search in Google Scholar
Yurko, R., S. Ventura, and M. Horowitz. 2019. “Nflwar: a Reproducible Method for Offensive Player Evaluation in Football.” Journal of Quantitative Analysis in Sports 15 (3): 163. https://doi.org/10.1515/jqas-2018-0010.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Research Articles
- G-Elo: generalization of the Elo algorithm by modeling the discretized margin of victory
- Evaluating the performance of elite level volleyball players
- Review
- Optical tracking in team sports
- Research Article
- MSE-optimal K-factor of the Elo rating system for round-robin tournament
- Influence of advanced footwear technology on sub-2 hour marathon and other top running performances
Articles in the same Issue
- Frontmatter
- Research Articles
- G-Elo: generalization of the Elo algorithm by modeling the discretized margin of victory
- Evaluating the performance of elite level volleyball players
- Review
- Optical tracking in team sports
- Research Article
- MSE-optimal K-factor of the Elo rating system for round-robin tournament
- Influence of advanced footwear technology on sub-2 hour marathon and other top running performances