Startseite Resistance to thyroid hormone α, revelation of basic study to clinical consequences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Resistance to thyroid hormone α, revelation of basic study to clinical consequences

  • Yaling Tang , Miao Yu und Xiaolan Lian ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. Januar 2016

Abstract

In the past 3 years, 15 patients with resistance to thyroid hormone α (RTHα), nine THRA gene mutations have been reported, reforming classification of RTH. RTHα exhibits distinguished clinical manifestations from RTHβ, including growth retardation, skeletal dysplasia, impaired neurodevelopment, cardiovascular dysfunction, constipation and specific thyroid axis type. This review focuses on possible pathogenesis by revelatory basic science of RTHα animal models in vivo, and patients’ mutant thyroid hormone receptor α (TRα) in vitro. Clinical manifestations and L-T4 effects are summarized, showing strong correlation to the severity of mutation mostly within the domain which dominated TR interaction with T3 and its corepressors/coactivators. In particular, we propose the diagnosis clues and promising treatment for clinicians.


Corresponding author: Xiaolan Lian, Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Beijing, P. R. China, Phone/Fax: +86-106-915-5358, E-mail: .

References

1. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010;31:139–70.10.1210/er.2009-0007Suche in Google Scholar

2. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest 2012;122:3035–43.10.1172/JCI60047Suche in Google Scholar

3. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nature Reviews Endocrinology 2014;10:582–91.10.1038/nrendo.2014.143Suche in Google Scholar

4. Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol 2014;171:R197–208.10.1530/EJE-14-0285Suche in Google Scholar

5. Chiamolera MI, Wondisford FE. Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 2009;150:1091–6.10.1210/jcem.94.4.9997Suche in Google Scholar

6. Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 1986;324:635-40.10.1038/324635a0Suche in Google Scholar

7. Refetoff S, Bassett JH, Beck-Peccoz P, Bernal J, Brent G, et al. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid 2014;24:407–9.10.1089/thy.2013.3393.nomenSuche in Google Scholar

8. Lafranchi SH, Snyder DB, Sesser DE, Skeels MR, Singh N, Brent GA, Nelson JC. Follow-up of newborns with elevated screening T4 concentrations. J Pediatr 2003;143:296–301.10.1067/S0022-3476(03)00184-7Suche in Google Scholar

9. Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 2012;366:243–9.10.1056/NEJMoa1110296Suche in Google Scholar PubMed

10. Dundar B, Bober E, Buyukgebiz A. Successful therapy with L-T4 in a 5 year-old boy with generalized thyroid hormone resistance. J Pediatr Endocrinol Metab 2003;16:1051–6.10.1515/JPEM.2003.16.7.1051Suche in Google Scholar PubMed

11. Guran T, Turan S, Bircan R, Bereket A. 9 years follow-up of a patient with pituitary form of resistance to thyroid hormones (PRTH): comparison of two treatment periods of D-thyroxine and triiodothyroacetic acid (TRIAC). J Pediatr Endocrinol Metab 2009;22:971–8.10.1515/JPEM.2009.22.10.971Suche in Google Scholar

12. Ramos-Prol A, Antonia Perez-Lazaro M, Isabel Del Olmo-Garcia M, Leon-De Zayas B, Moreno-Macian F, et al. Differentiated thyroid carcinoma in a girl with resistance to thyroid hormone management with triiodothyroacetic acid. J Pediatr Endocrinol Metab 2013;26:133–6.10.1515/jpem-2012-0230Suche in Google Scholar

13. Kaneshige M, Suzuki H, Kaneshige K, Cheng J, Wimbrow H, et al. A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 2001;98:15095–100.10.1073/pnas.261565798Suche in Google Scholar

14. Moran C, Schoenmakers N, Agostini M, Schoenmakers E, Offiah A, et al. An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. J Clin Endocrinol Metab 2013;98:4254–61.10.1210/jc.2013-2215Suche in Google Scholar

15. Van Mullem A, Van Heerebeek R, Chrysis D, Visser E, Medici M, et al. Clinical phenotype and mutant TRalpha1. N Engl J Med 2012;366:1451–3.10.1056/NEJMc1113940Suche in Google Scholar

16. Moran C, Agostini M, Visser WE, Schoenmakers E, Schoenmakers N, et al. Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)alpha1 and TRalpha2: clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol 2014;2:619–26.10.1016/S2213-8587(14)70111-1Suche in Google Scholar

17. Tylki-Szymanska A, Acuna-Hidalgo R, Krajewska-Walasek M, Lecka-Ambroziak A, Steehouwer M, et al. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (Thra). J Med Genet, 2015;52:312–6.10.1136/jmedgenet-2014-102936Suche in Google Scholar PubMed

18. Espiard S, Savagner F, Flamant F, Vlaeminck-Guillem V, Guyot R, et al. A novel mutation in Thra gene associated with an atypical phenotype of resistance to thyroid hormone. J Clin Endocrinol Metab 2015;100:2841-8.10.1210/jc.2015-1120Suche in Google Scholar PubMed

19. Yuen RK, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med 2015;21:185–91.10.1038/nm.3792Suche in Google Scholar PubMed

20. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, et al. The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. Embo J 1997;16:4412–20.10.1093/emboj/16.14.4412Suche in Google Scholar PubMed PubMed Central

21. Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, et al. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. Embo J 1998;17:455–61.10.1093/emboj/17.2.455Suche in Google Scholar PubMed PubMed Central

22. Gloss B, Trost S, Bluhm W, Swanson E, Clark R, et al. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 2001;142:544–50.10.1210/endo.142.2.7935Suche in Google Scholar PubMed

23. Mansen A, YU F, Forrest D, Larsson L, Vennstrom B. TRs have common and isoform-specific functions in regulation of the cardiac myosin heavy chain genes. Mol Endocrinol 2001;15:2106–14.10.1210/me.15.12.2106Suche in Google Scholar

24. Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 2002;99:3985–9.10.1073/pnas.062413299Suche in Google Scholar PubMed PubMed Central

25. Makino A, Wang H, Scott BT, Yuan JX, Dillmann WH. Thyroid hormone receptor-alpha and vascular function. Am J Physiol Cell Physiol 2012;302:C1346–52.10.1152/ajpcell.00292.2011Suche in Google Scholar PubMed PubMed Central

26. Van Mullem AA, Visser TJ, Peeters RP. Clinical consequences of mutations in thyroid hormone receptor-alpha1. Eur Thyroid J 2014;3:17–24.10.1159/000360637Suche in Google Scholar PubMed PubMed Central

27. O’shea PJ, Bassett JH, Sriskantharajah S, Ying H, Cheng SY, et al. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol Endocrinol 2005;19:3045–59.10.1210/me.2005-0224Suche in Google Scholar PubMed

28. Bassett JH, Boyde A, Zikmund T, Evans H, Croucher PI, et al. Thyroid hormone receptor alpha mutation causes a severe and thyroxine-resistant skeletal dysplasia in female mice. Endocrinology 2014;155:3699–712.10.1210/en.2013-2156Suche in Google Scholar PubMed PubMed Central

29. Tinnikov A, Nordstrom K, Thoren P, Kindblom JM, Malin S, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. Embo J 2002;21: 5079–87.10.1093/emboj/cdf523Suche in Google Scholar PubMed PubMed Central

30. Tavi P, Sjogren M, Lunde PK, Zhang SJ, Abbate F, et al. Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha1. J Mol Cell Cardiol 2005;38:655–63.10.1016/j.yjmcc.2005.02.008Suche in Google Scholar PubMed

31. Venero C, Guadano-Ferraz A, Herrero AI, Nordstrom K, Manzano J, et al. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 2005;19:2152–63.10.1101/gad.346105Suche in Google Scholar PubMed PubMed Central

32. Bassett JH, Nordstrom K, Boyde A, Howell PG, Kelly S, et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007;21:1893–904.10.1210/me.2007-0157Suche in Google Scholar PubMed

33. Ying H, Araki O, Furuya F, Kato Y, Cheng SY. Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 2007;27:2359–71.10.1128/MCB.02189-06Suche in Google Scholar PubMed PubMed Central

34. Liu YY, Schultz JJ, Brent GA. A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 2003;278:38913–20.10.1074/jbc.M306120200Suche in Google Scholar PubMed

35. Liu YY, Heymann RS, Moatamed F, Schultz JJ, Sobel D, Brent GA. A mutant thyroid hormone receptor alpha antagonizes peroxisome proliferator-activated receptor alpha signaling in vivo and impairs fatty acid oxidation. Endocrinology 2007;148:1206–17.10.1210/en.2006-0836Suche in Google Scholar PubMed

36. Quignodon L, Vincent S, Winter H, Samarut J, Flamant F. A point mutation in the activation function 2 domain of thyroid hormone receptor alpha1 expressed after CRE-mediated recombination partially recapitulates hypothyroidism. Mol Endocrinol 2007;21:2350–60.10.1210/me.2007-0176Suche in Google Scholar PubMed

37. Desjardin C, Charles C, Benoist-Lasselin C, Riviere J, Gilles M, et al. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone. Endocrinology 2014;155:3123–35.10.1210/en.2014-1109Suche in Google Scholar PubMed

38. Wojcicka A, Bassett JH, Williams GR. Mechanisms of action of thyroid hormones in the skeleton. Biochim Biophys Acta 2013;1830:3979–86.10.1016/j.bbagen.2012.05.005Suche in Google Scholar PubMed

39. Xing W, Govoni KE, Donahue LR, Kesavan C, Wergedal J, et al. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice. J Bone Miner Res 2012;27:1067–79.10.1002/jbmr.1551Suche in Google Scholar PubMed PubMed Central

40. Williams GR. Thyroid hormone actions in cartilage and bone. Eur Thyroid J 2013;2:3–13.10.1159/000345548Suche in Google Scholar PubMed PubMed Central

41. Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, et al. Thyroxine-thyroid hormone receptor interactions. J Biol Chem 2004;279:55801–8.10.1074/jbc.M410124200Suche in Google Scholar

42. Wallis K, Dudazy S, Van Hogerlinden M, Nordstrom K, Mittag J, et al. The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 2010;24:1904–16.10.1210/me.2010-0175Suche in Google Scholar

43. Schwartz HL, Strait KA, Ling NC, Oppenheimer JH. Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 1992;267:11794–9.10.1016/S0021-9258(19)49768-8Suche in Google Scholar

44. Chatonnet F, Guyot R, Benoit G, Flamant F. Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci USA 2013;110:E766–75.10.1073/pnas.1210626110Suche in Google Scholar PubMed PubMed Central

45. Faustino LC, Ortiga-Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: a perspective based on transgenic mouse models. Front Endocrinol (Lausanne) 2014;5:75.10.3389/fendo.2014.00075Suche in Google Scholar PubMed PubMed Central

46. Picou F, Fauquier T, Chatonnet F, Flamant F. A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol 2012;26:608-18.10.1210/me.2011-1316Suche in Google Scholar PubMed PubMed Central

47. Avci HX, Lebrun C, Wehrle R, Doulazmi M, Chatonnet F, et al. Thyroid hormone triggers the developmental loss of axonal regenerative capacity via thyroid hormone receptor alpha1 and kruppel-like factor 9 in Purkinje cells. Proc Natl Acad Sci USA 2012;109:14206–11.10.1073/pnas.1119853109Suche in Google Scholar PubMed PubMed Central

48. Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, et al. Purkinje cells and Bergmann glia are primary targets of the TRalpha1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 2014;141:166–75.10.1242/dev.103226Suche in Google Scholar PubMed

49. Wallis K, Sjogren M, Van Hogerlinden M, Silberberg G, Fisahn A, et al. Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 2008;28:1904–15.10.1523/JNEUROSCI.5163-07.2008Suche in Google Scholar PubMed PubMed Central

50. Schroeder AC, Privalsky ML. Thyroid hormones, t3 and t4, in the brain. Front Endocrinol (Lausanne) 2014;5:40.10.3389/fendo.2014.00040Suche in Google Scholar PubMed PubMed Central

51. Pantos C, Mourouzis I. The emerging role of TRalpha1 in cardiac repair: potential therapeutic implications. Oxid Med Cell Longev 2014;2014:481–2.10.1155/2014/481482Suche in Google Scholar

52. Stock A, Sies H. Thyroid hormone receptors bind to an element in the connexin43 promoter. Biol Chem 2000;381:973–9.10.1515/BC.2000.120Suche in Google Scholar

53. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014;94:355–82.10.1152/physrev.00030.2013Suche in Google Scholar

54. Van Mullem AA, Chrysis D, Eythimiadou A, Chroni E, Tsatsoulis A, et al. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRalpha1 receptor: consequences of LT4 treatment. J Clin Endocrinol Metab 2013;98:3029–38.10.1210/jc.2013-1050Suche in Google Scholar

55. Dittrich R, Beckmann MW, Oppelt PG, Hoffmann I, Lotz L, et al. Thyroid hormone receptors and reproduction. J Reprod Immunol 2011;90:58–66.10.1016/j.jri.2011.02.009Suche in Google Scholar

56. Aghajanova L, Lindeberg M, Carlsson IB, Stavreus-Evers A, Zhang P, et al. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 2009;18:337–47.10.1016/S1472-6483(10)60091-0Suche in Google Scholar

57. Jannini EA, Crescenzi A, Rucci N, Screponi E, Carosa E, et al. Ontogenetic pattern of thyroid hormone receptor expression in the human testis. J Clin Endocrinol Metab 2000;85:3453–7.10.1210/jcem.85.9.6803Suche in Google Scholar PubMed

58. Roef G, Lapauw B, Goemaere S, Zmierczak HG, Toye K, et al. Body composition and metabolic parameters are associated with variation in thyroid hormone levels among euthyroid young men. Eur J Endocrinol 2012;167:719–26.10.1530/EJE-12-0447Suche in Google Scholar PubMed

59. Gereben B, Zavacki AM, Ribich S, KIM BW, Huang SA, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008;29:898–938.10.1210/er.2008-0019Suche in Google Scholar PubMed PubMed Central

60. Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: a 2011 update. J Endocrinol Invest 2011;34:395–407.10.1007/BF03347465Suche in Google Scholar PubMed PubMed Central

61. Zavacki AM, Ying H, Christoffolete MA, Aerts G, So, E, et al. Type 1 iodothyronine deiodinase is a sensitive marker of peripheral thyroid status in the mouse. Endocrinology 2005;146:1568–75.10.1210/en.2004-1392Suche in Google Scholar

62. Barca-Mayo O, Liao XH, Alonso M, Di Cosmo C, Hernandez A, et al. Thyroid hormone receptor alpha and regulation of type 3 deiodinase. Mol Endocrinol 2011;25:575–83.10.1210/me.2010-0213Suche in Google Scholar

63. Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, et al. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. Embo J 1999;8:623–31.10.1093/emboj/18.3.623Suche in Google Scholar

64. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 2001;15:2137–48.10.1210/mend.15.12.0740Suche in Google Scholar

65. Martinez De Mena R, Scanlan TS, Obregon MJ. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology 2010;151:5074–83.10.1210/en.2010-0533Suche in Google Scholar

66. Schneider MJ, Davey JC, Galton VA. Rana catesbeiana tadpole red blood cells express an alpha, but not a beta, c-erbA gene. Endocrinology 1993;133:2488–95.10.1210/endo.133.6.8243269Suche in Google Scholar

67. Dasmahapatra AK, Thomas CR, Frieden E. Isolation, stabilization, and molecular weight estimation of thyroid hormone receptors of tadpole and chick embryo erythrocytes. Receptor 1992;2:213–23.Suche in Google Scholar

68. Wong CC, Chiu KW. Putative thyroid hormone receptors in red blood cells of some reptiles. Gen Comp Endocrinol 1987;66:434–40.10.1016/0016-6480(87)90254-1Suche in Google Scholar

69. Ono S, Schwartz ID, Mueller OT, Root AW, Usala SJ, et al. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J Clin Endocrinol Metab 1991;73: 990–4.10.1210/jcem-73-5-990Suche in Google Scholar PubMed

70. Kim DW, Park JW, Willingham MC, Cheng SY. A histone deacetylase inhibitor improves hypothyroidism caused by a TRalpha1 mutant. Hum Mol Genet 2014;23:2651–64.10.1093/hmg/ddt660Suche in Google Scholar PubMed PubMed Central

71. Schoenmakers N, Moran C, Peeters RP, Visser T, Gurnell M, Chatterjee K. Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta 2013;1830:4004–8.10.1016/j.bbagen.2013.03.018Suche in Google Scholar PubMed

Received: 2015-7-16
Accepted: 2015-12-7
Published Online: 2016-1-14
Published in Print: 2016-5-1

©2016 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Review
  3. Resistance to thyroid hormone α, revelation of basic study to clinical consequences
  4. Original Articles
  5. Improved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS-MLPA approach
  6. Safety and metabolic impact of Ramadan fasting in children and adolescents with type 1 diabetes
  7. Waist-to-height ratio as a marker of low-grade inflammation in obese children and adolescents
  8. Classification and clinical characterization of metabolically “healthy” obese children and adolescents
  9. Long-term BH4 (sapropterin) treatment of children with hyperphenylalaninemia – effect on median Phe/Tyr ratios
  10. Compound heterozygous mutations (p.T561M and c.2422delT) in the TPO gene associated with congenital hypothyroidism
  11. Prevalence and clinical features of polycystic ovarian syndrome in adolescents with previous childhood growth hormone deficiency
  12. Urate crystals deposition in the feet of overweight juveniles and those with symptomatic hyperuricemia: a dual-energy CT study
  13. A novel ALMS1 homozygous mutation in two Turkish brothers with Alström syndrome
  14. Novel AVPR2 mutation causing partial nephrogenic diabetes insipidus in a Japanese family
  15. Pituitary gigantism: a retrospective case series
  16. Case Reports
  17. A novel OTX2 gene frameshift mutation in a child with microphthalmia, ectopic pituitary and growth hormone deficiency
  18. A novel nonsense mutation in the WFS1 gene causes the Wolfram syndrome
  19. A 33-year-old male patient with paternal derived duplication of 14q11.2–14q22.1~22.3: clinical course, phenotypic and genotypic findings
  20. Familial Turner syndrome: the importance of information
  21. De novo mutation of PHEX in a type 1 diabetes patient
  22. Congenital hypothyroidism and thyroid dyshormonogenesis: a case report of siblings with a newly identified mutation in thyroperoxidase
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jpem-2015-0286/html
Button zum nach oben scrollen