Startseite Technik Design and security analysis of an image encryption based on gigabit passive optical network employing fiber-FSO protection at the last mile
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Design and security analysis of an image encryption based on gigabit passive optical network employing fiber-FSO protection at the last mile

  • Zainab A. Okbi , Iman Khalil Alak , Essam N. Abdulla ORCID logo EMAIL logo und Hayder H. Al-khaylani
Veröffentlicht/Copyright: 29. Dezember 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work offers an extra free-space optical (FSO) and protected fiber connection channel with self-repair capabilities to protect against fiber failures in gigabit passive optical networks (GPON). The new optical network unit (ONU) and optical line terminal (OLT) in the suggested PON architecture provide self-protective capability against fiber breakpoints. An integrated single mode fiber (SMF)/FSO link not only keeps data transfer uninterrupted even when fiber link installation is limited by environmental boundaries, like a wide river or the space between two mountains. In clear Iraq’s atmospheric conditions, the network system gets an optimum range transmission of favorable weather (fog) in both directions simultaneously to wired and wireless users over a bidirectional feeder fiber link 75 km and 430 m FSO or distribution fiber (DF) for downstream (D/S) and fiber feeder link 75 km and 230 m FSO or DF for upstream (U/S) with improved fault protection capability for both directions, while the range of FSO is reduced to 400 m, 260 m, and 250 m for D/S and 220 m, 160 m, and 150 m for U/S for snow, rain, and dust respectively. Asymmetric 2.5/1.25  Gbps for D/S and U/S has been used to achieve an acceptable minimum receiver sensitivity of −33.4 dB m for uplink and −34.4 dB m for downlink with a splitting ratio of 1:16.


Corresponding author: Essam N. Abdulla, Optoelectronics Engineering Department, Laser and Optoelectronics College, University of Technology–Iraq, Baghdad 10021, Iraq, E-mail:

  1. Research ethics: “The local Institutional Review Board deemed the study exempt from review” if the IRB specifically exempted the study from review.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. El-Mottaleb, SAA, Singh, M, Ahmed, HY, Zeghid, M, Mohamed, MMG. Capacity enhancement in free-space optics networks via optimized optical code division multiple access image transmission. Photonics 2025;12:571. https://doi.org/10.3390/photonics12060571.Suche in Google Scholar

2. Bindhaiq, S, Zulkifli, N, Supa’at, AM, Idrus, SM, Salleh, MS. 128 Gb/s TWDM PON system using dispersion-supported transmission method. Opt Fiber Technol 2017;38:87–97. https://doi.org/10.1016/j.yofte.2017.08.006.Suche in Google Scholar

3. International Telecommunication Union (ITU-T) G.984.6. Gigabit-capable passive optical networks (GPON): reach extension. In: ITU-T G-Series recommendations. Geneva, Switzerland: ITU-T; 2008:1–32 pp.Suche in Google Scholar

4. Abdellaoui, Z, Dieudonne, Y, Aleya, A. Design, implementation and evaluation of a fiber to the home (FTTH) access network based on a giga passive optical network GPON. Array 2021;10:100058. https://doi.org/10.1016/j.array.2021.100058.Suche in Google Scholar

5. Lin, CY, Chi, YC, Tsai, CT, Wang, HY, Lin, GR. 39-GHz millimeter-wave carrier generation in dual-mode colorless laser diode for OFDM-MMWoF transmission. IEEE J Sel Top Quant Electron 2015;21:609–18.10.1109/JSTQE.2015.2464276Suche in Google Scholar

6. Mandal, P, Sarkar, N, Santra, S, Dutta, B, Kuiri, B, Mallick, K, et al.. Hybrid WDM-FSO-PON with integrated SMF/FSO link for transportation of Rayleigh backscattering noise mitigated wired/wireless information in long-reach. Opt Commun 2022;507:127594. https://doi.org/10.1016/j.optcom.2021.127594.Suche in Google Scholar

7. Al-Saidi, NM, Ali, MH, Al-Azzawi, WKH, Abass, AK. Secure optical communication using a new 5D chaotic stream segmentation. Int J Sustain Dev Plan 2022;17:1553–60. https://doi.org/10.18280/ijsdp.170519.Suche in Google Scholar

8. Mohammed, SH, Ali, MH, Abass, AK, Al-Azzawi, WK. Design and implementation of cipher algorithm based secure optical communication system. Opt Quant Electron 2023;4:6–13.10.1007/s11082-022-04354-8Suche in Google Scholar

9. Radhi, SS, Hussien, RA, Abdulla, EN, Abass, AK, Rashid, FF. Design a secure TWDM-PON via the Hill cipher algorithm. Opt Contin 2025;4:1051–64. https://doi.org/10.1364/optcon.558674.Suche in Google Scholar

10. Fadil, EA, Tahhan, SR, Rashid, FF, Abass, AK, Salman, LA, Abdulla, EN, et al.. Design and performance analysis of optical communication system utilizing optical chaos. J Opt 2024;53:2435–40. https://doi.org/10.1007/s12596-023-01401-9.Suche in Google Scholar

11. Abdulla, EN, Radhi, SS, Rashid, FF, Hussien, RA, Salih, MM, Abass, AK, et al.. Security improvement for TWDM-PON utilizing blowfish cryptography. Appl Opt 2024;63:8297–305. https://doi.org/10.1364/ao.537254.Suche in Google Scholar

12. Hussien, RA, Radhi, SS, Rashid, FF, Abdulla, EN, Abass, AK. Design and performance analysis of secure optical communication system by implementing blowfish cipher algorithm. Results Opt 2024;16:100708. https://doi.org/10.1016/j.rio.2024.100708.Suche in Google Scholar

13. M Kumari, V Arya, and HMR Al-Khafaji. Wheel-based MDM-PON system incorporating OCDMA for secure network resiliency. Photonics 2023;10:329, https://doi.org/10.3390/photonics10030329(2023).Suche in Google Scholar

14. Mandal, P, Sarkar, N, Santra, S, Dutta, B, Kuiri, B, Mallick, K, et al.. Hybrid WDM-FSO-PON with integrated SMF/FSO link for transportation of Rayleigh backscattering noise mitigated wired/wireless information in. Opt Commun 2022;507:127594. https://doi.org/10.1016/j.optcom.2021.127594.Suche in Google Scholar

15. Mandal, P, Sarkar, N, Dutta, B, Kuiri, B, Santra, S, Atta, R, et al.. Optical fiber technology: a long-reach optically powered multi-band radio-over-fiber network by employing PolM-to-IM converter with enhanced fault-protection ability and less Rayleigh backscattering noise effect. Opt Fiber Technol 2022;74:103143. https://doi.org/10.1016/j.yofte.2022.103143.Suche in Google Scholar

16. Dutta, B, Kuiri, B, Atta, R, Sarkar, N, Sekhar, A. Numerical evaluation of bidirectional high-speed data transmission over turbulence tolerable FSO link employing WDM-OAM multiplexing and DP-QPSK modulation techniques. Opt Commun 2023;546:129753. https://doi.org/10.1016/j.optcom.2023.129753.Suche in Google Scholar

17. Alayedi, M, Jaradat, AM, Elgammal, Z, Malkawi, M. Performance optimization of SAC-OCDMA network based on 2-D CS code utilizing two light sources. In: 2024 6th international symposium on advanced electrical and communication technologies (ISAECT). IEEE, Alkhobar, Saudi Arabia; 2024.10.1109/ISAECT64333.2024.10799858Suche in Google Scholar

18. Cheng, M, Deng, L, Wang, X, Li, H, Tang, M, Ke, C, et al.. Enhanced secure strategy for OFDM-PON system by using hyperchaotic system and fractional Fourier transformation. IEEE Photon J 2014;6:7903409. https://doi.org/10.1109/jphot.2014.2363427.Suche in Google Scholar

19. Kaur, A, Sheetal, A, Miglani, R. Impact of optical modulation formats on 10 G/2.5 G asymmetric XG-PON system. Optik (Stuttg) 2017;149:351–8. https://doi.org/10.1016/j.ijleo.2017.09.063.Suche in Google Scholar

20. Ridha, F, Abdulla, E, Abdulhadi, A. Machine learning based on raw ensemble predictions scheme for TWDM -PON. J Opt Commun, in press.Suche in Google Scholar

21. Musadaq, R, Abdulwahid, SN, Abd Alwahed, NN, Abdulla, EN. Security analysis of an image encryption algorithm based on Blowfish in GPON. J Opt Commun, in press.Suche in Google Scholar

22. Parenreng, JM, Mustari, SM, Wahid, A. E-mail security system using El-Gamal hybrid algorithm and AES (advanced encryption standard) algorithm. Internet Things Artif Intell J 2022;2:1–9. https://doi.org/10.31763/iota.v2i1.510.Suche in Google Scholar

23. Abdulla, EN, Abass, AK, Abdulkafi, AA. Asymmetric 160/80 Gbps TWDM PON utilizing dispersion compensation technique. J Opt 2022;52:1683–93. https://doi.org/10.1007/s12596-022-00991-0.Suche in Google Scholar

24. Abdulla, EN, Abass, AK, Abdulkafi, AA. Asymmetric 160/80 Gb/s TWDM PON with supported transmission method utilizing FBG and DML. J Opt Commun 2022;45:s611–18. https://doi.org/10.1515/joc-2022-0225.Suche in Google Scholar

25. Abdulla, EN, Hussien, RA, Rashid, FF, Abdulkafi, AA, Abass, AK, Saleh, MA. Design and performance analysis of symmetrical 160 gbps TWDM-PON utilizing bidirectional configuration. J Opt 2023;53:1106–19. https://doi.org/10.1007/s12596-023-01263-1.Suche in Google Scholar

26. Mushatet, AF, Fadil, EA, Abdulla, EN. High bit rate secure FSO system utilizing Hill coding. J Opt Commun, in press. https://doi.org/10.1515/joc-2025-0147.Suche in Google Scholar

27. Zhou, N, Zhang, A, Zheng, F, Gong, L. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt Laser Technol2014;62:152–60. https://doi.org/10.1016/j.optlastec.2014.02.015.Suche in Google Scholar

28. Luo, Y, Lin, J, Liu, J, Wei, D, Cao, L, Zhou, R, et al.. A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process 2019;161:227–47. https://doi.org/10.1016/j.sigpro.2019.03.022.Suche in Google Scholar

29. Li, A, Belazi, A, Kharbech, S, Talha, M, Xiang, W. Fourth order MCA and chaos-based image encryption scheme. IEEE Access 2019;7:66395–409. https://doi.org/10.1109/access.2019.2911559.Suche in Google Scholar

30. Liu, Y, Wang, J, Fan, J, Gong, L. Image encryption algorithm based on chaotic system and dynamic S-boxes composed of DNA sequences. Multimed Tool Appl 2016;75:4363–82. https://doi.org/10.1007/s11042-015-2479-7.Suche in Google Scholar

31. Ponuma, R, Amutha, R. Compressive sensing based image compression-encryption using novel 1D-Chaotic map. Multimed Tool Appl 2018;77:19209–34. https://doi.org/10.1007/s11042-017-5378-2.Suche in Google Scholar

32. Zhou, N, Li, H, Wang, D, Pan, S, Zhou, Z. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt Commun 2015;343:10–21. https://doi.org/10.1016/j.optcom.2014.12.084.Suche in Google Scholar

33. Korai, UA, Shaikh, FK, Kalwar, S, Soothar, KK, Muneer, B, Solangi, A. Analyzing the quality of free space optical signal in fog: a case study of Pakistan. Wirel Pers Commun 2017;95:569–79. https://doi.org/10.1007/s11277-016-3910-8.Suche in Google Scholar

34. Wan Ruslan, WRH, Idrus, SM, Ramli, A, Ramli, N, Mohd Supa’at, AS, Mohd Nor, F. Terrestrial free space optic propagation analysis considering Malaysia weather condition. J Teknol 2011;54:217–29.10.11113/jt.v54.811Suche in Google Scholar

35. Singh, H, Miglani, R, Mittal, N, Singh, H, Kaur, J, Gupta, A. Development of a cost-effective optical network based on free space optical (FSO) and optical fiber links for enabling smart city infrastructure: a hybrid approach. Opt Fiber Technol 2023;81:103544. https://doi.org/10.1016/j.yofte.2023.103544.Suche in Google Scholar

36. Hsu, C, Jiang, S, Hsieh, S, Yeh, C, Lai, Y, Chen, L, et al.. Hybrid self-protected Fiber-FSO WDM-PON system with fiber breakage prevention. Photonics 2022;9:822. https://doi.org/10.3390/photonics9110822.Suche in Google Scholar

Received: 2025-10-27
Accepted: 2025-11-26
Published Online: 2025-12-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0466/html
Button zum nach oben scrollen